Differential Equations

Solutions of First Order Differential Equations

1. Differential Equations DE's

A differential equation is an equation involving an unknown function and its derivatives.

A differential equation is an ordinary differential equation ODE if the unknown function depends on only one independent variable. If the unknown function depends on two or more independent variables, the differential equation is a partial differential equation PDE.

Example 1: The following are differential equations involving the unknown function y.

$$
\begin{gathered}
\frac{d y}{d x}=5 x+3 \\
e^{y} \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}=1 \\
4 \frac{d^{3} y}{d x^{3}}+(\sin x) \frac{d^{2} y}{d x^{2}}+5 x y=0 \\
\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+3 y\left(\frac{d y}{d x}\right)^{7}+y^{3}\left(\frac{d y}{d x}\right)^{2}=5 x \\
\frac{\partial^{2} y}{\partial t^{2}}-4 \frac{\partial^{2} y}{\partial x^{2}}=0
\end{gathered} \quad \begin{aligned}
& \text { ODE } \\
& \text { PDE }
\end{aligned}
$$

The order of a differential equation is the order of the highest derivative appearing in the equation.

Example 2: From example 1, Equation 1 is a first-order differential equation; 2, 4, and 5 are second-order differential equations. (Note in 1.4 that the order of the highest derivative appearing in the equation is two.) Equation 3 is a third-order differential equation.

$$
\begin{array}{rr}
\frac{d y}{d x}=5 x+3 & \mathbf{1}^{\text {st }} \text { order DE } \\
e^{y} \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}=1 & \mathbf{2}^{\text {nd }} \text { order DE } \\
4 \frac{d^{3} y}{d x^{3}}+(\sin x) \frac{d^{2} y}{d x^{2}}+5 x y=0 & \mathbf{3}^{\text {rd }} \text { order DE } \\
\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+3 y\left(\frac{d y}{d x}\right)^{7}+y^{3}\left(\frac{d y}{d x}\right)^{2}=5 x & \mathbf{2}^{\text {nd }} \text { order DE } \\
\frac{\partial^{2} y}{\partial t^{2}}-4 \frac{\partial^{2} y}{\partial x^{2}}=0 & \mathbf{2}^{\text {nd }} \text { order DE }
\end{array}
$$

1.1 Notation of Differential Equations DE's

i. The expressions $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, y^{4}, \ldots ., y^{(n)}$ are often used to represent, respectively, the first, second, third, fourth, . . . nth derivatives of y with respect to the independent variable under consideration.
ii. Thus, $y^{\prime \prime}$ represents $\frac{d^{2} y}{d x^{2}}$ if the independent variable is x , but represents $\frac{d^{2} y}{d p^{2}}$ if the independent variable is p .
iii. Observe that parenthesis are used in $y^{(n)}$ to distinguish it from the nth power, y^{n}.
iv. If the independent variable is time, usually denoted by t, primes are often replaced by dots. Thus, \dot{y}, \ddot{y}, and \dddot{y} represent, $\frac{d y}{d t}, \frac{d^{2} y}{d t^{2}}$ and $\frac{d^{3} y}{d t^{3}}$ respectively.

Example 3: Is $y(x)=c_{1} \sin 2 x+c_{2} \cos 2 x$, where c_{1} and c_{2} are arbitrary
constants, a solution of $y^{\prime \prime}+4 y=0$?

Solution:

$y^{\prime}=2 c_{1} \cos 2 x-2 c_{2} \sin 2 x$
$y^{\prime \prime}=-4 c_{1} \sin 2 x-4 c_{2} \cos 2 x$
Hence

$$
\begin{aligned}
y^{\prime \prime}+4 y & =\left(-4 c_{1} \sin 2 x-4 c_{2} \cos 2 x\right)+4\left(c_{1} \sin 2 x+c_{2} \cos 2 x\right) \\
& =-4 c_{1} \sin 2 x-4 c_{2} \cos 2 x+4 c_{1} \sin 2 x+4 c_{2} \cos 2 x \\
& =0
\end{aligned}
$$

Then $y(x)=c_{1} \sin 2 x+c_{2} \cos 2 x$ is a solution of the D.E.

Example 4: Show that $y=3 e^{2 x}-e^{-2 x}$ is a solution for the DE, $y^{\prime \prime}-4 y=0$ Solution:
$y^{\prime}=3 * 2 * e^{2 x}-(-2) e^{-2 x}=6 e^{2 x}+2 e^{-2 x}$
$y^{\prime \prime}=6 * 2 * e^{2 x}+2 *(-2) e^{-2 x}=12 e^{2 x}-4 e^{-2 x}$
Hence

$$
\begin{aligned}
y^{\prime \prime}-4 y & =\left(12 e^{2 x}-4 e^{-2 x}\right)-4\left(3 e^{2 x}-e^{-2 x}\right) \\
& =12 e^{2 x}-4 e^{-2 x}-12 e^{2 x}+4 e^{-2 x} \\
& =0
\end{aligned}
$$

Then $y=3 e^{2 x}-e^{-2 x}$ is a solution of the D.E

Homework

Determine whether $y=x^{2}-1$ is a solution of $\left(y^{\prime}\right)^{4}+y^{2}=-1$.

2. First Order Differential Equations

To solve the first order differential equations, we have the following cases:

1. Separable Equations
2. Homogeneous Equations
3. Exact Equations
4. Linear Equations
5. Bernoulli Equations

2.1 Separable Equations

In this case the D.E can be written in the form:

$$
\begin{equation*}
f(x) d x+g(y) d y=0 \tag{1}
\end{equation*}
$$

Or $\quad M d x+N d y=0$, where $\mathrm{M}=\mathrm{f}(\mathrm{x})$ and $\mathrm{N}=\mathrm{g}(\mathrm{y})$
Solution of this equation by direct integration of both sides gives the general solution.

$$
\begin{equation*}
\int f(x) d x+\int g(y) d y=c \ldots \ldots \ldots \ldots \tag{2}
\end{equation*}
$$

Where, c is a constant.
Example 5: Solve the D.E, $(x+1) \frac{d y}{d x}=y$?

Solution:

$\frac{d y}{d x}=\frac{y}{(x+1)}$ Multiply both side by $\frac{d x}{y}$ to separate the variable and integrate both sides gives,

$$
\frac{d y}{d x} \times \frac{d x}{y}=\frac{y}{(x+1)} \times \frac{d x}{y}
$$

$$
\frac{d y}{y}=\frac{d x}{(x+1)}
$$

$$
\int \frac{d y}{y}=\int \frac{d x}{(x+1)}
$$

$\ln (y)=\ln (x+1)+c$

Example 6: Solve the D.E, $x(2 y-3) d x+\left(x^{2}+1\right) d y=0 \quad$?
Solution:
Separate the variables by multiply both side by $\frac{1}{(2 y-3)\left(x^{2}+1\right)}$

$$
\frac{1}{(2 y-3)\left(x^{2}+1\right)} \times x(2 y-3) d x+\frac{1}{(2 y-3)\left(x^{2}+1\right)} \times\left(x^{2}+1\right) d y=0
$$

$$
\frac{x}{\left(x^{2}+1\right)} d x+\frac{1}{(2 y-3)} d y=0
$$

Integrate both sides,

$$
\begin{aligned}
& \int \frac{x}{\left(x^{2}+1\right)} d x+\int \frac{1}{(2 y-3)} d y=0 \\
& \frac{1}{2} \int \frac{2 x}{\left(x^{2}+1\right)} d x+\frac{1}{2} \int \frac{2}{(2 y-3)} d y=0 \\
& \frac{1}{2} \ln \left(x^{2}+1\right)+\frac{1}{2} \ln (2 y-3)+c=0
\end{aligned}
$$

Homework

Solve the D.E, $x e^{x} d y+\frac{x^{2}+1}{y} d x=0 \quad ?$
Solve the D.E, $\frac{d y}{d x}=\frac{x \sqrt{1+y^{2}}}{2-3 x^{2}}$?

2.2Homogeneous Equations

A first-order D.E in the form
$f(x, y) d x+g(x, y) d y=0$
Is a homogeneous type if both functions $f(x, y)$ and $g(x, y)$ are homogeneous of the same degree n . that is, multiplying each variable by a parameter λ, we find:

$$
\begin{equation*}
f(\lambda x, \lambda y)=\lambda^{n} f(x, y) \quad \text { And } \quad g(\lambda x, \lambda y)=\lambda^{n} g(x, y) \tag{4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{f(\lambda x, \lambda y)}{g(\lambda x, \lambda y)}=\frac{f(x, y)}{g(x, y)} . \tag{5}
\end{equation*}
$$

Equation (3) can be written in the form:

$$
\begin{equation*}
\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}=F\left(\frac{y}{x}\right) . \tag{6}
\end{equation*}
$$

To solve eq. (6), put

$$
\begin{equation*}
v=\frac{y}{x}, \quad y=v x, \quad \frac{d y}{d x}=v+x \frac{d v}{d x} \tag{7}
\end{equation*}
$$

Then, substitute eq. (7) in eq. (6) gives:

$$
\begin{aligned}
& v+x \frac{d v}{d x}=F(v) \\
& F(v)-v=x \frac{d v}{d x}
\end{aligned}
$$

$\frac{d v}{F(v)-v}=\frac{d x}{x} \ldots \ldots$... Separable D.E
By integrating both sides, we get the final solution

$$
\int \frac{d v}{F(v)-v}=\ln (x)+c
$$

Example 7: Find the general solution of the following D.E,

$$
\left(x^{3}+y^{3}\right) d x-3 x y^{2} d y=0 \quad ?
$$

Solution:

$$
\frac{d y}{d x}=\frac{\left(x^{3}+y^{3}\right)}{3 x y^{2}}
$$

Multiply by parameter λ

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\left(\lambda^{3} x^{3}+\lambda^{3} y^{3}\right)}{3 \lambda x(\lambda y)^{2}}=\frac{\lambda^{3}\left(x^{3}+y^{3}\right)}{\lambda^{3} 3 x y^{2}}=\frac{\left(x^{3}+y^{3}\right)}{3 x y^{2}} \\
& \therefore \frac{f(\lambda x, \lambda y)}{g(\lambda x, \lambda y)}=\frac{f(x, y)}{g(x, y)} \text { The D.E is homogeneous. }
\end{aligned}
$$

Dividing by x^{3} gives: (to get $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$)

$$
\frac{d y}{d x}=\frac{1+\left(\frac{y}{x}\right)^{3}}{3\left(\frac{y}{x}\right)^{2}}
$$

Assume $v=\frac{y}{x}, \quad y=v x, \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{1+(v)^{3}}{3(v)^{2}} \ldots \ldots . . \text { Separable D.E } \\
& x \frac{d v}{d x}=\frac{1-2 v^{3}}{3 v^{2}} \\
& \int \frac{3 v^{2}}{1-2 v^{3}} d v=\int \frac{d x}{x} \\
& -\frac{1}{2} \ln \left(1-2 v^{3}\right)=\ln (x)+c \\
& \therefore \ln \left(1-2\left(\frac{y}{x}\right)^{3}\right)+\ln (x)=c_{1} \text { Where } c_{1=-2 C}
\end{aligned}
$$

Example 8: Solve the D.E,

$$
\left(x e^{\frac{y}{x}}+y\right) d x-x d y=0 ?
$$

Solution:

$$
\frac{d y}{d x}=\frac{\left(x e^{\frac{y}{x}}+y\right)}{x}
$$

Multiply by parameter λ

$$
\frac{d y}{d x}=\frac{\left(\lambda x e^{\frac{\lambda y}{\lambda x}}+\lambda y\right)}{\lambda x}=\frac{\lambda\left(x e^{\frac{y}{x}}+y\right)}{\lambda x}=\frac{\left(x e^{\frac{y}{x}}+y\right)}{x}
$$

$\therefore \frac{f(\lambda x, \lambda y)}{g(\lambda x, \lambda y)}=\frac{f(x, y)}{g(x, y)}$ The D.E is homogeneous.
Dividing by x gives:

$$
\frac{d y}{d x}=e^{\frac{y}{x}}+\frac{y}{x}
$$

Let $v=\frac{y}{x}, \quad y=v x, \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$

$$
\begin{aligned}
& v+x \frac{d v}{d x}=e^{v}+v \ldots \ldots . . \text { Separable D.E } \\
& x \frac{d v}{d x}=e^{v}+v-v \\
& \int \frac{d v}{e^{v}}=\int \frac{d x}{x} \\
& -e^{-v}=\ln (x)+c \\
& \therefore \ln (x)+e^{-\left(\frac{y}{x}\right)}=c
\end{aligned}
$$

