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Chapter 1
Introduction To Automatic Controls

What is control: Control is the process of changing, manually or automatically, the
performance of a system to be desired one. It is a series of actions directed for making a §
variable system adheres to a reference value (that might be either constant or variable).

Why control: Because systems by themselves usually do not behave the way we would like
them to be.
Control Objectives:
1. Safety

2. Environmental Protection

3. Equipment Protection

4. Smooth Plant Operation and Production Rate
5

6

g

% . Product Quality

2 6. Profit Optimization

% 7. Monitoring and Diagnosis

% Historical Development: %

% % Energy should be supplied for doing work and accomplish functions, so early people had %

% relied upon their own brute strength or that of beasts of burden. %

$ < Simple mechanical devices such as wheels and levers were used to accomplish immortal §

% feats like building of high pyramids by Egyptians and Roman highways and aqueducts. %

% < Early people began to satisfy the increasingly growth in their demands by utilizing %

% power from natural sources such as winds for powering sailing vessels and windmills, %

% also waterfalls were used for turning water wheels. %

< Invention of Steam engine was a milestone in human progress because it provided

% people with useful power that could be used at will. %

% % Since then, many different means have been devised for obtaining convenient sources %

% of energy while engineers design and develop machines and equipment. %

% % High performance and desired output of machines and equipment could be maintained %
by utilizing suitable control devices while early machines used control means

% (controllers) of a manual nature as shown in Figure 1. %

% < Development of control engineering provides machines and equipment with high %

% performance control devices (controllers) in which automatic controls relieve people of %

% many monotonous activities. Also modern complex controls can perform functions %
beyond the physical abilities of people.

% % It is well known that as applications and uses of control devices (controllers) have %

% increased, also the demands upon the performance of these control systems increased. %

% %

% : %
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Figure 1 Manual control systems of regulating temperature of water and level of fluid
in tank by adjusting input valve

Terminology:
System: is a collection of components and processes coordinated together to perform a §
function in which system could be described as a block diagram as shown in Figure.

Input Output

— SYSTEM

Systems may be mechanical, electrical, chemical, heating, air-conditioning, and here are some §

examples, 3
1. The process of filling tank with water is a mechanical system in which water flow rate %
Qi is an input while H height of water is output as shown in Figure. 3
>
I[-L\ 3
Qin System %
it Q in W ater H %
H| = —_—> —>
it it Input Tank Output %
2. Process of driving a car is a mechanical system in which fuel is input while speed is %
output as shown in Figure. %
System %
Fuel Car Speed,
é . \é %
Input Engine Output %
3. Input of automatic traffic (signal) system at roadway intersections is the electric %
power and output is the colored signal light as shown in Figure.

System %
Electric Power Traffic Colored Light %
Input (Signal) Light Output %
Control System (System with Controller): is an interconnection or an arrangement of %

physical components connected in such a manner to form a system configuration that will
provide a desired response. A control system is designed to achieve a specified desired %
purpose as shown in Figure 2. %
2 %

e e e




<
<
<
<
<
<
<
<
<
<
<
<
<«
<
<
<
<
<
<
<
<
<
%

AL Farahidi University
Aeronautical Technical Engineering 2019-2020

Automatic Control Engineering College of Technical Engineering

DY)

Engine

Output
shaft

-

Figure 2 Watt's Fly weight governor, invented by Watt in 18™ Century used to control
speed of the steam engine
In order to identify or define a control system, two terms should be introduced:

1. Input: is the stimulus, excitation or command signal applied to control system. Inputs
could be physical variables or abstract ones such as reference, set point or desired

values for the output of the control systems.

2. Output: is the actual response resulting from a control system in which it may or may

not be equal to the specified response implied by the inpuft.
Input and output represent desire and the actual response respectively as shown in Figure.

Input: Stimulus | Control |Output: Response .
(Reference Inputs) p_» .;} (Controlled Variable)
Desired Output System | Actual Response
Response

Control System Configurations:

1. Open-loop control system: A control type that computes its input into a system using
only the current state. It does not use feedback to determine whether its output has
achieved the expected goal. An open-loop control system utilizes a controller or

control actuator to obtain the desired response as shown in Figure.

Pr r
INPUL sy 0cess o —p OUtput

Component

(Process or Component to be Controlled)

Controller System to be Controlled
________________ |mmmmmmmmmmmmmmo o
Desired Outpu't E ! E
1 .
1 1
Response 1 Actuating : . Process or L3 Output
Reference | Device 11" | Component | 1
1
[ 1

Input |

(Open-loop Control System without Feedback)

There are many examples of open-loop control system such as electric ovens, gas ring,
water tap, traffic signals, washing machine, electric fan, irrigation sprinkler system,

electric motor, and manual operation of the accelerator in automobile.
3
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} Closed-loop control system: A type of control system that manually or automatically
changes the output according to the difference between feedback and input signals. In §
3 contrast to an open-loop control system, a closed-loop utilizes an additional measure of the
¥ actual output to compare with the desired output response as shown in Figure.

Process or

INPUL sy —p Output

Component

(Process or Component to be Controlled)

System to be Controlled

f Controller =P
f Desired Output™= "~ """ """ """ " r====s==sss 1 | i Output
3 R -E _ Actuating |1 | Processor
§ hors Comparison == ) & -'-9*, :
; Reference ! Device ! X Component 1 Controlled
g Input “t L === === -] Variable
« 1 1
« 1
% E Measurement & i
< .
% Closed-Loop Feedback Control System (with feedback)
«
% Examples of closed loop control system such as heating and air-conditioning systems,
% DC servo motor, speed control system, filling tank with water using float, tension-
% regulating apparatus used in paper industry.
2 Feedback Control System: A control system in which the value of some output quantity is
% controlled by measuring and feeding back the value of it so as to bring this value closer to a
% desired one. Also it is known as closed-loop control system such as speed control system
which is shown in Figure.
% Fly-weight Governor
: A | pmm==ee-e-- Actual
Desired | ! ! s :
1 Steam ! team : Speed

% ﬂ)‘» Metal Sphere mSpt Valy jee— . ! 2 Output

Reference ! ! ! Engine ! < P
% Input ! “t """ emmm - - - ! D o

[} 1 N
% : Output Shaft k S 2
% ey J '
Closed-Loop Feedback Speed Control System (with feedback)

% Effect of feedback control system:
% = Reduce Error between the actual and desired value.
% » Change the stability of the system.

» Change overall system gain.
% » Change sensitivity of the system gain.
% » Reduce effects of external disturbance.
% » Reduce effect of variations of system parameters.

Classification of Feedback Control System:

% Feed back control systems are divided into two classes:
% 4
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1. Servomechanism: A servomechanism is a power-amplifying feedback control system in 3
which the controlled variable is a mechanical position or a time derivative of position §
such as velocity or acceleration. An automatic aircraft landing system is an example of §
servomechanism. :
Regulators. A regulator is a feedback control system in which the reference input or §
command is constant for long periods of time such input is known as set point. Most
temperature controllers are regulators.
Examples of Control Systems:

Many applications could be found for control systems in science, industry, and home. Here §
are a few examples:
1. xResidential heating and air-conditioning systems controlled by a thermostat (closed- §
loop control system) as shown in Figure. :

X

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

2. The cruise (speed) control of an automobile (closed-loop control system) as shown in

W d path
\\\\\\\\\m; Forward pat
\\\\\\\\\\\}\}\l}}}}nﬁl“m“ Input Output
i .
(required Heater > (actual
temperature) temperature)
Feedback path
Temperature <
sensor

Figure.
I Forward path o
nput utput
(rquired Throttle > (actﬁal
speed) actuator speed)
Feedback path
Speed

SENSor

3. Position control in a human lib (closed-loop control system) as shown in Figure.

\

4_ Input Forward path Output
(required Muscle » (actual
position) position)

5.

6 Feedback path

) Position »

7. sensor B

8 7

4. Temperature control system (closed-loop control system) as shown in Figure.
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] thermometer
Desired temperatures - : !

furnace

f> ------ ;';| . mixer

operator valve O
. - air ﬁ
Desired Temperature
Temperature )
Operator > Valve =» Mixer = Furnace >
Output

Measurement |&

5. Automobile steering control system (closed-loop control system) as shown in Figure.

Desirad
direction
Actual of travel
cirection
of travel
Desired ) Actual
. Steering .
course Driver mecharism Automobile P course
of travel of travel

Measurement,
visual and tactile

6. Control of traffic lights (open-loop control system) as shown in Figure.

Lights
Ccl,”ﬂ"‘{l‘j_) Computer =3/ Switch [t Traffic Lights fmm»
ned Output

7. Activation of a light switch to regulate the illumination in a room
8. Human controlling the speed of an automobile by regulating gas supply to the engine
9. Automatic traffic control (signal) system at roadway intersections
10. Automatically control system turns on a room lamp at dusk, and turns it off in day light
11. Automatic hot water heater
12. Environmental test-chamber temperature control system
13. An automatic positioning system for a missile launcher
14. An automatic speed control for a field-controlled dc motor
15. The attitude control system of a typical space vehicle

6

%
%
%
%
%
Colored %
olore %
%
%
%
%
%
%
%
%
%
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16. Automatic position-control system of a high speed automated train system

: 17. An elevator-position control system used in high-rise multilevel buildings.

} System Representation:

Mathematical relationships of control elements are usually represented by block diagram §

¥ where inputs and outputs are described by arrows. Overall block diagram representation for

! an entire system can be constructed by combining block diagrams for each component of the

¥ system.

= Block: Any component or process to be controlled can be represented by a block which §
is described as a box refers to multiplication operation. A block may be a set of 3
elements described by an input/output relationship as shown in Figure.

Input Control Output
Element

= Comparator: is represented by a circle refers to the
summing operation which makes a comparison between
feedback signal (b) and reference input (r) while an _
actuating signal (e) may be existed according to the Input Signal
difference between feedback signal (b) and reference b
input (r) as shown in Figure.

r+ e=r—b_
Reference Ac‘rua‘ringl

= Control Elements: Portion of a control system between the actuating signal (e) and the
controlled variable (c) is called the control elements as shown in Figure.

£ G(D) ¢

Actuating Controlled
Signal Variable

And, c=G(D)e

represents input and output relationship. Also it is called as the transfer function and
could be calculated as,

G(D) =
Input
» Complete block diagram: complete over all block diagram representation for the whole

control system with single input single output (SISO) could be described generally as
shown in Figure.

Control System

t c(t)
Reference r® £ G(D) Controlled

input * variable

Feedback elements
H(D)

«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
%
% Where, G(D) represents mathematical differential equations of operation that

:
:
:
:
:
:
Output %
:
:
:
:
:
:
:
:
:
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Where, H(D) represents mathematical differential equations of operation for §

feedback elements. Also complete over all block diagram representation for the whole
control system with two inputs single output (MISO) could be described generally as shown §

in Figure.
ul Disturbance Signal
Disturbance
Control B | function elements Controlled
elements _|d Controlled System variable
Reference 7(t) +~ e m T c(t)
input A G1(D) e G,(D)

Feedback elements

H(D)

A
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Chapter 2
REPRESENTATION OF CONTROL COMPONENTS

To investigate the performance of control systems, it is necessary to obtain the
mathematical relationship G(D) relating the controlled variable c(t) and the actuating
signal e(t) of the forward elements. This is accomplished by first obtaining the
mathematical representation for each component and then expressing each of these
equations as a block diagram.
Operational Notation:

Operator D is a symbol which indicates differentiation with respect to time,

= DN = ;? n=123,...

. -2 _dx Ay _
D(x+)i)—dt(x+y)—dt+dt—Dx+Dy
* [dt =< = Integration

Representation of Mechanical Components:

1.2.2.0.0.2.0.2.2.60.0.0.0.0.2.0.0.2.0.0.0.0.0.2.0.0202022022828280808288082880828882888280882808080808.0.0.0

1. Mass-Spring Damper:

Mass-spring damper shown in Figure is a
mechanical control component used to control
oscillations and vibrations in machines and equipment. In
which the applied total force F is input while the
displacement X, dX/dt, d*X/dt?, is output. Its block
diagram should be represented by investigating the %
individual components as, SIS,
% Spring: The spring force F; required to resist deflection a

distance X is,

EIETER
X

F, = KX F,
Where, K is stiffness or spring rate. Since Fy is input, X is
output, and K is the mechanical impedance,

1
X:EFS

The block diagram representation for the spring is,

Spring Force F; mmmmeyy 1/K fmemeeX Displacement

% Viscous damper: Damping force F,; required to move one end of dashpot at velocity

X/

Vis,
Fq =BV = B = BDX > X, dX/dt
Where, B is damping coefficient of viscous damper. Q
Since F4 is input, X is output, and BD is the  Fa———] \
mechanical impedance,
1
XZZEBFa

The block diagram representation for the viscous damper is,

Damping Force  Fj mmmme=3{ 1/BD  jme———3 X Displacement

1
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% Mass: Using Newton's second law of motion, summation of external forces acting on

a mass,

Rl

xl/X, d?X/dt?

2

d2x
ZF8=F+Mg—Fd—P;=M—=MD2X

dt?

Since, Y F, is input, deflection X is output, and MD? is mechanical impedance,

1
X=MDZZFe

The block diagram representation for mass is,

External Forces ). F, w3y 1/MD? |3 X Displacement

% For the whole mass-spring damper combination shown in

Figure, input is total applied F while X is output,
zFe =F + Mg — F;— F, = MD2X
F=(MD? +BD + K)X — Mg

Some ways are used to represent block diagram of the whole mass-spring damper
combination,
1. Force F; required to maintain the mass at the reference position X;

F;, = (MD? + BD + K)X; — Mg,
F—F,=(MD?*+BD+K)(X—X;)—Mg + Mg
Variation in total force from the reference position is:
F—-F=f also, X—X;,=x, then,

f=(MD?*+BD +K)x =Zx
Where, Z = MD? + BD + K, refers to the mechanical impedance
of the mass-spring damper system. As shown in Figure, f is
input and x is output,

1 1
x=7f *= UDZTBD + K’
And the associated Block diagram,
f 1 xX_ o
MD? + BD + K -
. Since, F = (MD?* + BD + K)X — Mg, using techniques of ¢X

linearization about reference position,

1.2.2.0.0.2.0.2.2.60.0.0.0.0.2.0.0.2.0.0.0.0.0.2.0.0202022022828280808288082880828882888280882808080808.0.0.0

xl/X, d?X/dt?

1F

<]
=
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Since, F = F(X) linearization at reference position yields, i
AF—aF AX F F—aF X=X —aF :
= axl, &% = 3%l i) f=ax0% vk
oF) _ d[(MD2+BD+K)X M]‘ = MD?+ BD +K
oxl, = ax 9. = B
Then,
_ 2 -1
f=(MD?*+BD+K)x Or, X = MD2+BD+Kf
And the associated Block diagram,
f 1

“| MD2+BD +K

X s
7

For series combination,

f=ht+th+fs

f

Equivalent Grounded-chair Representation of
Mass Spring Damper Combination

f = MD?*x + BDx + Kx
And the associated Block diagram,

3. Combination of Mass-spring damper could be easily recognized using the technique
of Grounded-chair Representation as shown in Figure,

1

N

in Figure,

f

“| MD2+BD +K

X
7

4. The whole Mass-spring damper
represented using the techniques of block-diagram Reduction
(Algebra). For the whole mass-spring damper combination shown

block diagram could be

D fo=f—fa—fi=MD*x

fs
f—

In which it could be represented as a block diagram,

famfi= )t

22 24 2 24 2 24 2 24 24 26 24 24 24 24 24 2 24 2 24 2 24 4 2 24 4 2 24 4 2 26 26 2 26 24 20 24 24 2 24 24 2 24 24 2 24 24 2 26 24 2 24 24 2 24 24 2 24 24 2 2 24 2 2 24 2 2 26 2 2 26 26 2 24 24 2 26 24 26 26 24 26 26 24 2 26 24 2 26 24 2 0 4 2 %

| W+ I

fa

The overall block diagram representation for the Torsional inertia-spring damper
combination is constructed as shown in Figure.

1.2.2.0.0.2.0.2.2.60.0.0.0.0.2.0.0.2.0.0.0.0.0.2.0.0202022022828280808288082880828882888280882808080808.0.0.0

System of Mass-Spring
Damper Combination

X =———
MDZ24+BD+K

<
=

226 26 26 26 2 24 26 26 26 26 24 26 26 26 26 2 26 26 26 26 2 2 26 26 2 26 26 2 26 26 3 26 26 2 26 26 2 26 26 24 6 24 26 6 26 26 2 26 26 2 26 26 2 26 26 2 26 26 2 26 26 2 26 26 2 2 26 2 2 26 26 2 26 26 2 26 26 2 26 26 2 26 2 2
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- .-

f _1_\/ Zfe 2 X *
’?? )|1/MD L >

Using the rule of combining blocks in parallel,

A 2 >| 1/MD? Z

farfs | pp+K | *

v+

\ 4

For single input single output control system SISO, the mathematical differential equation
of operation could be obtained as,

x 1/MD? 1
f 1+ KT MD2+BD+K
MD?2
Then,
- 1
! “| MD2+BD + K > X

2. Rotational Mechanical Components:
A disk rotating in a viscous medium and supported by a
shaft shown in Figure, is considered as Torsional
inertia-spring damper combination in which the forque T
is input and the angular displacement 6 is the output.
% Rotating Shaft: A rotating shaft usually behaves as a torsional spring which is
subjected to a twisting torque T; when it is displaced T,

by an angle 6 as shown in Figure, L A——
T, < 0 T, = K.0 = %)

Where, K; is a forsional spring rate. Since 6 is input \

and Ty is output, the block diagram representation for . L "
this rotating shaft (torsional spring) is,
6 T,

—> kK —>

% Viscous Medium: Damping Torque T, required to overcome effect of viscous friction
in viscous medium with B, coefficient on a rotating member,

do
T, = B,w = B,— = B,DO

dt
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Since 6 is input and T, is output, the block diagram representation for the process
of viscous friction is,

0 Tq
—— 5 Bp > T
% Rotating Disk: The summation of external torques } T, required to \’
rotate a disk with angular velocity w as shown in Figure,
T,=]a= Egﬂ— EEZ_JDZQ Ty
¢ IT A T der _/\

J is the mass moment of inertia. Since, ), T, is input and 6 is output

.
=152 .
Block diagram representation of rotating disk is shown in Figure,

Y Te——3 1/jp? —>¢

< Summation of external forques acting on the disk,
z T,=T—T,;—T,

In which it could be represented as a block diagram as shown,

T
T—Td—TS=ZTe

hﬂ
| W+ I

Td
The overall block diagram representation for the Torsional inertia-spring damper
combination is constructed as shown in Figure.

T,
s K, 0

v

~
| W+ I
&

éZT">|1/]D2 4 L o
N

Tq

B,D

Using the rule of combining blocks in parallel,

>| 1/]D? i

Ty +T
¢ st B,D+K, 0

T T.

| W+ I
v

For single input single output control system SISO, the mathematical differential equation
of operation could be obtained as,
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6 1/]D* 1
T 1 4B22+K " D24+ B D + K,
jD?

Since, T is input and 6 is output,

1

T
JD? + B,D + K,

\ 4

—> 0

And the transfer function is,
0 1

T JD?+B,D + K,
The overall block diagram representation for the Torsional inertia-spring damper
combination may be also constructed as,

ZTe:T—Td—TS:]oc:]DZH T = (JD? + B,D + K,)0 = Z6
1 1
o=7T 0= D yBDIK |
The overall block diagram representation as shown in Figure.
- 1
T AT Y A

And the transfer function is,
0 1
T JD2+B,D +K,

Series Mechanical Elements:
1. Total force is equal o the summation of forces acting on each individual component,
f=hAththit+fot
2. Each element undergoes the same displacement,
X=X, =Xy = X3 = Xq =+
3. Equivalent mechanical impedance is equal to the summation of impedances for each
individual component,

Z=Ty+Zy+ 23+ 2y +
Examplel: For the system of mass-spring damper y
combination shown in Figure, determine,
1. The equation relating force f and displacement x
2. The total impedance Z of mechanical system
3. Represent the associated overall block diagram K,

Solution;

Equivalent  Grounded-chair  Representation is
presented for the system to be easily recognized as
shown in Figure.

For series arrangement,
f=hthtftitfs
f=(MD? + K, + K,+B,D + B,D)x = Zx
Where, Z is the equivalent impedance,
Z =MD? + B,D + B,D + K, + K,
6

O s,
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Since f is input and x is output,
1 1

= WD’+BD+BD+K +K,’ x=z/
Overall block diagram representation for this system,
f SN 1 X o f l X
“| MD2 +B,D +B,D + K, + K, - > A 5

Parallel Mechanical Elements:
1. Same force is transmitted through each element.
f=h=h=f=fa="
2. Total deflection is the sum of individual deflections of each element.
X=Xx1+Xx; +x3+x4+ -

3. Total impedance Z is equal to one divided by the sum of reciprocal of the individual

impedances for each element.

1 f
7=
1/Z1+1/Z2+1/Z3+"' x

Example 2: For the system shown in Figure, determine, K,

1. The total impedance Z of mechanical system B2

2. The equation relating force f and displacement x K, 1

3. Represent the associated overall block diagram
Solution, Byl—"*2
Since the system is a parallel combination of mechanical elements, B, = $x3

Z,=K,  Zy=K,  Z3y=BD,  Z,=B,D ,:;,
Total impedance,
1 1

/= o
1/2,+ 1)z, + 1/25+ 1)z, 1/K,+1/K, + 1/B,D + 1/B,D

Second way,
x = —2x)+ (x1 —x3) + (x —x3) + (x3—0)

1 1 1 1
N S L=(—+—+—+—)x
K, "K, "B,D B,D \K, K, B.D B,D
1
f= X =7Zx

1/K, +1/K, + 1/B,D + 1/B,D
Total Impedance,

1
7 =
1/K; + 1/K, + 1/B,D + 1/B,D
Since, f=12x
1
f= x
1/K, + 1/K, +1/B,D + 1/B,D
f is input and x is outpuft,
1 1
X = Ef X = 1 f

1/K1+1/K,+1/B1D+1/B,D

Overall block diagram representation for this system,
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f 1 X f 1 x
—> I > — ; >
1/K{+1/K,+1/B{D+1/B,D
Note: In parallel elements, same force is transmitted through each one. f

Springs and dampers satisfy this condition because force is same on both

sides. But it is not for mass because difference in forces acting on both

sides as shown in Figure a. Thus a mass located between other elements Kk
cannot be in parallel with them. It can be in parallel only when it is located

as a last element as shown in Figure b. B
For the system in Figure b, the WA =
displacement x is:
X = Xq + X + X3

X
x=(x—y)+G-2)+z f—>o—\W—]
K

11

x—<E+@+W)f (b)
1 1

f=1/k+1/BD + 1i/Mpz"~ f=2x 2 =1/K+1/BD + 1/MD?

=

;********************b****

<
4—

For system shown in Figure a, from the equivalent Grounded-chair Representation spring K

is in parallel with the series combination of M and B.
Z, =K, Z, = MD? + BD

Grounded-Chair Representation
Total impedance,
\ 1 _ 1
" 1/Z,+1/Z, 1/K+1/(MD? + BD)
1 _ K(MD? + BD)
1/K + 1/(MD% + BD) T MD2+BD+K

/A

f=2Zx=

Since f is input and x is output,
MD?*+ BD + K 1
~ K(MD? + BD) x=z/

Overall block diagram representation for this system,
f .| MD*+BD+K x
"I 'KMD? + BD)

X

lx
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N[+~
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Note: to determine the relationship between displacements x and y, for the series portion

of the Ground- Chair Representation,
f=fi+f, =MD?*y + BDy = (MD? + BD)y

K(MD? + BD) _ (MD* + BD) ~ K
MDZ+BD+K Y Y= MD*+BD+K”
Or,
MD? +BD + K 1 ,
X = X y x=<E>(MD + BD + K)y

Grounded-Chair Representation:
General procedure to construct the Grounded-chair Representation is,
1. Identify the coordinates of the system.
2. Draw coordinates such that coordinate at which force acts is at the top and ground
is at the bottom.
3. Insert each individual element in its correct location with respect to these
coordinates.

Example 3: For mechanical system shown in Figure construct the equivalent Grounded-
Chair Representation and determine equations relate f and x, x and y.Then represent the
associated block diagram.

f A K

7
é
0

Solution:
Equivalent Grounded-Chair representation as shown in ‘l’f
Figure,
Z=Zl+Zz+Z3 Z1:M1D2 ZZZKI,
7. = 1 __ (K+BD)(K,+M,D?)
3 7 1/(K+BD)+1/(K;+MyD2)  Ky+M,D2+K+BD

Also, z3 can be determined in such a way: M.
x==-y)+y :

_f3 f3 A, 1 1
X = + = + f3
K+BD ' K,+M,D? \K+BD ' K, + M,D?

1
~1/(K + BD) + 1/(K, + M,D%) "
B 1 _ (K +BD)(K, + M,D?)
"~ 1/(K+BD) +1/(K, + M,D?) K, + M,D? + K + BD

f3

f3 = z3x

Z3

1
7=|MDp2+K ] .y
W S K T BD) + 1/(K, + M,D?) f=2x

1
= (M,D? + K ]
f =MD"+ K+ e T By T 17K, + M09

9
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From the equivalent Grounded-Chair Representation,

1
= (K M., D? lso, =
fs=Wo MDDy also, fs = 1 By (K, + MDD
x _ 2
1/(K+BD)+1/(Ky+M,D2) (K + M,D%)y
Then, equation relates x and y,
_1+@+%w
x= K+8D )
From f equation above, input is f and x output then,
1
Mtk L f
107+ Ky + 1/(K+BD)+1/(K,+M,D?)

Overall block diagram representation,

1
f X
—_— 5 1 —
M,D* + Ky + 1/(K+BD)+1/(Ky+M,D2)
Example 4: For mechanical system shown in Figure, construct the M

equivalent Grounded-Chair Representation and determine the

2626 26 26 26 26 26 26 2 26 24 2 26 26 2 26 26 3 26 26 2 26 26 2 26 26 2 26 26 2 26 26 24 2 26 26 2 26 26 2 26 26 2 26 X 2 26 2 2

v
equations relate f and y, x and y. fﬂ:_l X
Solution:
Equivalent Grounded-Chair representation as shown in Figure, P
\Lf K vy
s\ ;
y ok
KZ% =
x+
mm
1 M,D?(K, + BD)
Zl = MlDZ, Z2 % Kll Zg =

~1/(K, + BD) + 1/M,D2 _ M,D2 + BD + K,
Since, Z = Z, + Z, + Z3, then,
1

¥ 1/(K, + BD) + 1/M,D?
Since f =Zy, then equation relates f and y,
1
= |M,D? + K ]
f= MDD+ K+ By + 1/m,02)”
The associated block diagram representation is,

Z=M,D?*+ K,

f 1

—

1 —

2
M, D" + Ky + 1/(Ko+BD)+1/M,D?2

For parallel portion,
y=0@-—x+x

10
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_ _f3 f3 _ 1 1 . .
Y =%+80 T 07 and y = (K2+BD + —MZDZ) f; Parallel Combination
~ 1 _ MyD*(K, + BD)
=, s + 170509 = M2+ BD + K,”
AISO, f3 = M2D2x
M,;D%(K,+BD) 2 . M,D?
Then, MyD2+BD+K, y =M;D%x y= (1 + K2+BD)x

Example 5: For the lever shown in Figure, the variation in the applied force is f and the
variation in spring position is x. The horizontal line represents the reference position of
the lever.
a) Determine the equation relating f and x
b) Determine the relationship between t and @ (where t = fL; is the variation in applied
torque and, x = L,0 ).

Solution:
a) Take the moments about the pivot position,
D My=0,  flp=fily—fyly =0, flp = fili + fol, xg) x
Slnce, fl = lel and, fz = szz <
fLy = Kyx1Ly + Kx,L, L L, 21
From the Figure, x; = i—lxz
2
Since, x, = x, then, x; = 2x, flp = Ky2aly + Kyxly = (Ky 2Ly + KyLy ) ¢
Ly Ly Ly
1 1
. (2) (KiLs® + KoL) L (£) (KiLs® + KaLy?)
& L i - Ly
Since f is input and x is outpuft,
Ly
X = f

(£) (KaLs® + KoL)
And the associated block diagram is,

AN b x
1
(2) (KaLs® + KoL)

v

b) Since, t = fL; and x = L,
fLr = (KiLy* + K,L,%) L"—z Then, t = (KiLi? + K,L,%)0

11
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Torque t is input while angular displacement @ is output,

= 2 zt
KiL{" + K,L,
And the associated block diagram is,

t 1 1)
— KiL,* 4+ K,L,* — >

Representation of Electric Components:

Basic electric elements are Resistor, Inductor, and Capacitor:

1) Electric Resistor: L Eg |
Voltage drop across Resistor with R Resistance as shown in Figure, I ! AAAAAN '
ER = RIR + —
Electrical impedance of Resistor is, Zp = R, also Ej is input and Iy is output, R
1
IR = EER
Block diagram representation of Electric Resistor as shown in Figure,
2) Electric Inductor:
Voltage drop across Inductor with L Inductance as shown in Figure, | E, q

I‘

E=Lﬂ=LD1 I
ek ——> 000000,

Electrical impedance of Inductor is, Z, = LD, also E; is input and [, is ou#pu‘r, L

A

I, = ! E
L — LD L
Block diagram representation of Electric Inductor as shown in Figure,
E I
3) Electric Capacitor:
Voltage drop across Capacitor with C Capacitance as shown in Figure, | E; R
Q [ledt 1 . I "
E.==<= =] c | C
¢ ¢ of e 1 C
Electrical impedance of Capacitor is, Zc = - , also E¢ is input and I is output, ¢
1
e =1/cp "
Block diagram representation of Electric Capacitor as shown in Figure,
Ec . 1 I¢ >
1/CD

Representation of Electric Components in Series:

Electric laws for elements arranged in series combination are,

1. E=E +E,+E;+- Total Voltage Drop.

2. I=L=1,=1I3 = Total Current.

3. Z=Z,+Z,+Z5+ - Equivalent Electric Impedance.
12
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For example, to obtain mathematical equation of operation for RLC circuit in series

combination as shown in Figure,

E R
EL ‘IA ER ‘L E(;
I o A | C
— 000000 MWWA— 1 C 2
L R C
Total Voltage drop across RLC circuit, E=E +Eg+E;

1
E =LDI RI —1
Lt R+CDC

For series combination, I = I, = I = I, then,

1
E=(LD+R+—]I
( * +CD>

Second way, Equivalent Electrical Impedance is,

1
Z=27,+2Zs+Z Z=LD+R+, Since, E = ZI

1
E=<LD R —>I
+ +CD

Total voltage drop E is input while current I is output,
1

I = E
LD +R+1/CD

Overall block diagram representation for RLC circuit in series combination shown in Figure,

E 1 .
| LD+R+1/CD g
Since, Q = [Idt, and, 1=DQ, E = (LDZ +RD +%)Q

In which is similar Yo mathematical mechanical equation in series combination,
f=(MD?+BD + K)x
Equivalent Electrical Impedance in this case is,

1
Z=LD2+RD+E

Since total voltage drop E is input and charge Q is output,
1

C=ipyrRD+1/CE
Overall block diagram representation for RLC circuit in series combination as in Figure,
E _ 1 Q
LDZ+RD +1/C
Representation of Electric Components in Parallel:

n
»

Electrical laws for elements arranged in parallel combination are,

1. E=E,=E,=E;="-- Voltage Drops.
2. I=L+1L+13+ - Total Current.
1
3.7 = Equivalent Electric Impedance.
Yzt 2t 2t i P

For example, to obtain mathematical equation of operation for RLC circuit in parallel

combination as shown in Figure,

13
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" FR00000
I 1 R 1
+ ——> | =By — > _
WWW—
< E N
Total current flows across RLC circuit, [=1+Ix+1;
For electrical parallel combination, E =E, = Ep = E; Then,
I = ( ! + ! + ! )E E = ! I
~\LD "R 1/CD I
LD R 1/CD
Second way, Electrical Impedance in parallel is,
1 1 1
=", ==, E=17I E=——7—7—1I
R RS R S
Zi Zy Z3 LD R 1/CD LD R 1/CD
Total voltage drop E is input and current [ is output,
I—1E I—<1+1+ 1)E
Z ~\LD R 1/¢D
Overall block diagram representation for RLC circuit in parallel combination as in Figure,
E 1,1 1 Y
LD R 1/CD g
Since, Q = [Idt, and, I =DQ
1
E=——— 0
o U E

LDZ2 ' RD 1/C
In which is similar Yo mathematical mechanical equation in parallel combination,
1
f= x
1/MD?2+1/BD + 1/K
Equivalent Electrical Impedance in this case is,

LD?2 ~ RD 1/C
Since total voltage drop E is input and charge Q is output,

_1E _(1+1+1)E
Q_Z 0= LD2 " RD 1/C

Overall block diagram representation for RLC circuit in parallel combination as in Figure,
E 1 1 1 Q

LDZ+E+1/C g

\ 4

14
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Analogies:

Analogies refer to similarity for different systems like mechanical and electrical in
which their equations of operation have same form as in Table.

System Series Combination Parallel Combination
1
— 2 = X
Translational Mechanical | /= MP*+BD+K0x | =752 77pp 117K
System f=(MD+B+K/D)% | f= L i
1/MD + 1/B + 1/(K/D)
2 1 1
E=(LD +RD+E>Q -
. — +t—+—
Electrical LD? _ RD _ 1/C
System ( 1 ) P
E=|\LD+R+—)I E = I
CD ERE
LD R 1/CD

1)

Analogies are constructed by replacing quantities of one system by another which
called analogous quantities. Analogies are classified into two categories:
Direct Analog: In direct analog, series mechanical elements are replaced by
corresponding series electrical elements or parallel mechanical elements are replaced
by corresponding electrical elements in parallel and vice-versa. A Direct Force-Voltage
Analog is constructed as in Table 1.
Table 1: Analogous Quantities in a Direct (Force-Voltage) Analog.

Translational || Force || Velocity || Displacement Mass Viscous Spring
Mechanical f X = Dx x M Damping Constant
System Coefficient K
B
Electrical || Voltage || Current Charge Inductance || Resistance || Reciprocal
System E I =DQ Q L R of
Capacitance
1/C

2. Inverse Analog: In inverse analog, series mechanical elements are replaced by parallel
electrical or parallel mechanical elements are replaced by series electric elements and
vice-versa. An Inverse Force-Current Analog is constructed as in Table 2.

Table 2: Analogous Quantities in an Inverse (Force-Current) Analog.

22 24 2 24 2 24 2 24 24 26 24 24 24 24 24 2 24 2 24 2 24 4 2 24 4 2 24 4 2 26 26 2 26 24 20 24 24 2 24 24 2 24 24 2 24 24 2 26 24 2 24 24 2 24 24 2 24 24 2 2 24 2 2 24 2 2 26 2 2 26 26 2 24 24 2 26 24 26 26 24 26 26 24 2 26 24 2 26 24 2 0 4 2 %

Translational || Force || Velocity || Displacement Mass Viscous Spring
Mechanical f X X M Damping Constant
System Coefficient K
B
Electrical || Current || Voltage || Integral of || Capacitance || Reciprocal of || Reciprocal of
System I E Voltage c Resistance Inductance
E/D 1/R 1/L
15
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Example 6: Let it be desired to determine the electrical analog for

mechanical system shown in Figure using:
a. Direct (Force-Voltage) Analog.
b. Inverse (Force-Current) Analog.

Solution:

Equivalent Grounded-Chair Representation can be shown in Figure,

Since, Z; = K, Z, = MD? + BD, total mechanical

K

=

-
<

i
A1
r P

impedance is, X
, 1 1 foz K
= = =4/4X
le_|_Zl_2 1/K +1/(MD? + BD) | ¢
Differential equation of operation of mechanical system, M pi—=— 7Y
1 K(MD? + BD) %,,,,,, ' .
f= 1/K + 1/(MD? + BD)x = MDZ + BD + Kx Grounded-Chair Representation
Second way,
S (* 57 550)~ (¢ * 7 50)"
x=(x- x=|\zt+—7"—|=|(z+——
Yy K ' MD*+ BD K MD*+ BD
1 _ K(MD? + BD)

f

Since f is input and x is output,
MD? +BD + K
K(MD? + BD)

_1 —
x—zf x =

~1/K+1/(MD%+BD)" _ MD?+BD + K"

Overall block diagram representation for translational mechanical system is:

f MD? + BD + K X
—_— —>

K(MD2 + BD)

a) Direct (Force-Voltage) Analog:

Equivalent electrical system of Direct Force-Voltage Analog is represented as

shown in Figure using Table 1,

| ¢
\ 1 C
L5 ¢

[ s

1 _ KMD*+BD)  K(MD +B)

f

Equivalent electrical differential equation of mechanical system using Tablel,

o 1 _ (1/C) (LD* + RD)

~1/K+1/(MD?+BD)- _ MD>+BD+K ' MD?+BD+K"

(1/C) (LD + R)

~1/(1/C0) + 1/(LD2 +RD) * _ LDZ+RD +1/C

16

LD?+RD +1/C
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Or, from equivalent electrical circuit,

1

L, 17 1/(1/CD)+1/(LD +R)

1
7 =
E=27I =
1/(1/CD) + 1/(LD + R)
1
E

~1/(1/C) + 1/(LD? + RD)

I I=DQ

_ (1/C) (LD* + RD)
~ LD2+RD+1/C

Since E is input and Q is output, then

_ LD*+RD+1/C
"~ (1/C) (LD?% + RD)
Overall block diagram representation as shown in Figure,

E Lb2+RD+1/c | ©
—— —
(1/C) (LD? + RD)

Also it could be represented with current I,

_ (/)LD +R)
~ LD2+RD+1/C
And overall block diagram representation

I_LD2+RD+1/C
~ (1/¢)(LD +R)
as shown in Figure,

or,

—

E LD?2+RD+1/C | !
—
(1/C) (LD + R)

b) Inverse (Force-Current) Analog:

as shown in Figure using Table 2,

Equivalent electrical system of inverse force-current analog can be represented

| €
L —

I—5—go0000— ¢

R
—WW—
A E
Since,
1 _ K(MD? + BD) K(MD + B)

f =1k ¥1/mpz+BDY" = MD?

Equivalent electrical differential equation of mechanical system using Table 2,
(1/L)[CD?* + (1/R)D] | E

YBD+K  MD?’+BD+K”

(1/L)(CD + 1/R)

[ 1 E
~l1/(1/L) + 1/(CD? + (1/R)D)]5 B

CD2 + (1/R)D + (1/L)|D ~ ¢D2 + (1/R)D + 1/L

Or, from equivalent electrical circuit,

1
Z=27Z,+Z,=LD+

_CD*+ (1/R)D +1/L

. (CDp*+(1/R)D+1/L
M ‘< (1/L)(CD + 1/R) )

1/(1/cD) +1/R

(1/L)(CD + 1/R)
_ (1/L)(CD +1/R)
- CD2+ (1/R)D +1/L

Since E is input and I is output, then

17
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b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

»*

»*

(1/L)(CD + 1/R)
CD?+ (1/R)D +1/L
Overall block diagram representation as shown in Figure,

E (1/L)(CD + 1/R) I f
CD? + (1/R)D + 1/L g
K;
Example 7: Let it be desired to determine the electrical analog for
the mechanical system shown in Figure using: M
a) The direct analog. b)The inverse analog.

Solution: K, B,
Equivalent Grounded-Chair Representation can be constructed as
shown in Figure, [’

Total impedance is,

7 = 1 __ K1(MD?+B,D+K;)

=1 T =— ,
K1+—MD2+BZD+K2 MD +BzD+K1+K2

_ K;(MD*+B,D + Kz) _ Ky(MD + B, + KZ/D)

Zx

Since,

f

MD2+BZD+K1+K2 MD2+BZD+K1+K2
a) Direct (Force-Voltage) Analog: ar
Equivalent electrical system of direct force-voltage analog is #L.
represented as shown in Figure using Table 1,

| cC
1\
‘ L CE R,

_ K;(MD*+ B,D + K;) K,[MD + B, + (KZ/D)]

~MD?+B,D+K, + K,  MD2+B,D+K, +K,
Equivalent electrical differential equation of mechanical system using Tablel,
X(1p2 1 1 2
Cl(LD +R,D + ) Cl(LD+R2+ )

Since,

E = I

(LD? + R, D+c1+c2) (LD2+R D+Cl+ )

Or, from the equivalent electrical circuit,

1 1 LD + 5+ Ry i(LD+R2+L)
Z= = = =
E— 1 S z
a5 LDteptRe + LD+z 5+R; GD (LD ton T RZ) +1 (LD HRD 43 ot 2)
(LD +R,y + LD)
7 = 1 Since, E =1ZI
(LD +R,D + -+ )
G G
—(LD+R2+—) i(LDZ+RZD+i)
E = 1 I = il

(LD? +RyD +— - Lt 2)

(LD? + R,D + = o Z)Q
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Since E is input and Q is output,
(LD? +R,D

+ — + )
€1 (G

Cil(LDZ +R,D + C—z)

Overall block diagram representation for translatio

E

n mechanical system is:

. (LD? +R,D + = + Cz)

Q

e

C—l(LDZ +R,D + C—z)

—

Also it could be represented with current I,

i(LD+R2 +i)
_ I

¢ (LD2 +R,D + = + Cz)

or,

And overall block diagram r‘epr‘esen‘ra‘rion as shown in Figure,

(LD2+R D+ 1+C2)

I = E

Cil(LD+R2+CZ—D)

g (LD2+RD+1+2)

I

A\ 4

C—1(LD +R, +c2_n)

v

b) Inverse (Force-Current) Analog:

Equivalent electrical system of inverse force-

shown in Figure using Table 2,

current analog can be represented as

I

—_— L,

E

000000000000 ——F

Since,
_ K;(MD*+ B,D + KZ)

_ Ky[MD + B, +

\ 4

(K2/D)]

T MDZ+B,D+ K, +K,

N =(cor+0+7) |k

(cp2+ D +5+7 )B

~MD2+B,D+K, +K,
Equivalent electrical differential equation of mechamcal system using Table2,

no)

(CD2+ 2+L1+ 2)

(CD+R2+ .

Or, from the equivalent elec‘rrical cir'cuiT
1 D242+ 142
Ry Ly

1 1

+—+—
LD Ry

Ly

Z(CD+R_2+L2_D)

Z=L1D+

CD

Since E = ZI then,

D242 4142
2

Ly L

Z(CD +R—2+L2—D)

E = i or,

=L—11(CD+R—12+LZLD)

D242 4241
Ry, Ly L

Since E is input and I is outpuft,

19
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(eo++5)

1
R, LyD
I = E I =<E
(C pz+ 241y i) Z
Overall block diagram representation for translation mechanical system is:
1 1 1
E o (CD + % + LZ_D) I

cp24+2 4241

R, Lq Lo ¢f

Example 8: Let it be desired to deftermine the electrical analog of R |
mechanical system shown in Figure using: b= e

a. Direct (force-voltage) analog. =K, l x

b. Inverse (force-current) analog. K =

- ( ) 9 f 1§ —— tj B,

Solution: 4 My ly
The equivalent grounded chair K, é l  J N —
representation can be constructed as K % - B, _l_
shown in Figure. Total impedance, [ ] e

Z=M1D2+1{1+31D+ﬁ I TTTTTI T T TTTTTTTTTTTTTTF,

K, ' M,D?
= M1D2 + Kl + BlD
M,D?
= (MD? + K5)
K3
Since, f = Zx
, M,D? K, M,D _
f: MlD +BlD+K1+1 X = M1D+B1+_+1 x
— (MyD? + K3) D = (M,D% + K,)
2 2

a) Direct (force-voltage) analog,
Equivalent electrical of direct force-voltage analog as shown in Figure using Table 1,
C;
| c
I 4 Ly €1 R, 1 C _
—_— ———e
000000 E=WW—

< |

Since,
M,D? K, M,D

f=|MD*+BD+K;+= x=|MD+B; +—+=
K—Z(M2D2+K2) D K—Z(M2D2+K2)

X

Equivalent electrical differential equation of mechanical system using Tablel,
1 2 1
E=|LD?>+R D+i+ﬂ Q=|LD+R;+ ! + C_ZLZD I
! UG Lz Vo ab T pe 4+
2 2

Or, from the equivalent electrical circuit,

20
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T T,D
Z=LD+—+R +———=LD+—+Rj+————=LD+—+R +—> —
Yhep T L T e T epye Y oD Y T GLD2 4+ 1
L LD 2 LoD
C2D
1
1 C_LzD
Z=LD+—+R +——— Since, E = ZI
CiD L,D? +—
1 2
1 C_LZD 1 C_LZDZ
E=|LD+R;+ + —= |1 =|L.D*+ R D+ —+ 22—+
GD  L,p2+— C1 L2D2+——
C; )
Since E is input and Q is outpuft,
1
Q= »
LD? 4 RyD + L 4 2
1 1 1 L2D2+_
Overall block diagram representation for translation mechamcal system is:
1
E—b L D2 L’
LiD? + RyD + — + <2
1 L2D2+_
Also it could be represented wi‘rh current I,
1 —LzD 1
E=|L:D+R I , 1= E
10+ C1D+L D2+— | 1L2D
C1D L2D2+C—
And overall block diagram representation as shown in Figure,
1
E T I
—_— k2D —
LD+ Ry +—+
C1D L2D2+_

b) Inverse (force-current) analog,

Equivalent electrical system of inverse force-current analog for mechanical system is
represented as shown in Figure, using Table2,

| 2
Ly
; 000000,
A 4 | 2
Ly |Czr
—0.00000,
< g >
Since,
= (M,D? +B,D + K, + M D (MD+B +K1+ KoMzD )
f=(M 1 M, 02+ K, )" 1 "D " M,D? 4K,

Equivalent electrical differential equation of mechanical system using Table 2,

21
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T > T
I= CD2+1D+1+ZCZD E—CD+1+1 P E
1 Rl Ll C2D2 + i D 1 Rl LlD C2D2 + l
Ly Lo
Or, from the equivalent electrical circuit,
Z= ! - ! _ 1
T 1 2t G0~ 2¢,0
ot Yo C1D+L1D+R1+L2C2D2+1 C.D+L 4L 4 L2”
C1D 287D 1 Ry LD C2D2+£E
2

Since, E=17I

1

E = I

1

1 1 1y
CiD +—+— + 22—
R4 LD C2D2+E

C,D

Since E is input and [ is output,
EJQD
Ly

1
I=|CD+—+
¥R, LD CzD2+Ll
2

E

1
I == ClD + —

+ E
Ry LD ¢,p2 +Ll
2

1—15
- Z

Overall block diagram representation for translation mechanical system is:

E 1 1
——> CD+—

1
ZCZD I

n
»

_.l_
Rl LlD CZDZ +Li
2

Representation of Thermal Systems:

Thermal systems are those that involve storage and transfer of heat. T;

I. Rate of heat transferred into a body is proportional to
the difference of temperature across the body,

Q x (T1—7i)
Q=hA(Ty —T)=-(T, = T)
Ry

Q =Rate of heat transferred into the body

h =Coefficient of heat transfer of the surface of the body

A =Surface areaq, T =Temperature of the body
T, =Temperature of the surrounding medium
Rr = 1/hA, Equivalent thermal resistance (Thermal impedance)
Since, T, — T is input and Q is output, the block diagram representation is,
T1 I T1 — Tu i L}
> R
T

II. Time rate of change of temperature of the body (dT/dt) is proportional to the

rate of heat transferred into the body.

” dT
LT
c =Average specific heat of the body
M =Mass of the body

22

dT
Q = Mc— = C;DT

dt
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[S19]

Cr = M = ¢ =Equivalent thermal capacitance

Since, Q is input and T is output then,

- 1
_QDQ

Block diagram representation for this feedback process as shown in Figure,

Q 1 T
— ¢Dp [
T

Overall block diagram representation of thermal system is shown in Figure,

T, T T, —T L 1o 1 T

7 > RT CTD -7
-\ T

To simplify the above block diagram some steps should be taken into consideration,
1) Using the rule of combining blocks in cascade,

N T,—T 1 T
- | RyCrD
b

\ 4

2) Using the rule of eliminating a feedback loop,

1
RpCrD T

1
* 1
RyCrD

Ty

v

1+

And the transfer function or the mathematical differential equation of operation is,
T 1

T, 1+ R;CrD

The time constant of the thermal system is, t. = R;C; ,
1

T_1+TCDT1

The general solution or the dynamic response for the first-order differential equation of

operation for a unit step input (T, = 1) is,
t

T)=1—e ts
In which the response of the thermal system to a unit step input is shown in the Figure,

A
T, ()4 T®
Slope =1/t

Unit Stev Funct

~
~
~
—
I
[N
|
Q
(;;‘f‘?

\ AN
v

N
R
w
8
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Analogies of Thermal Systems:

1. Direct Temperature-voltage Analog: T E;

Thermal system may be replaced by an equivalent direct
electrical circuit as shown in Figure,

1
Rr

Equivalent electrical circuit in series, the mathematical T E
differential equation of operation, c
I = (B, —E) = CDE PR LG T
R - " 1+RCD

Direct Temperature-voltage analog as in the table,

- T, Ql Ry Il R
" 14 RCD

Thermal Temperature || Rate of heat Thermal Thermal
System T flow Resistance || Capacitance
Q Ry Cr
Electrical Voltage Current Resistance || Capacitance
System E I R C

2. Inverse Temperature-current Analog:
Thermal system could be replaced by an equivalent inverse electrical circuit as
shown in Figure,

Ty
+ o -
- [—
ngRT E " R L
T
Cr -

For thermal system, the mathematical differential equation of operation is:

—1(T T) = C;DT rT—— 1
Q_RT A T " 14 RCrD
And equivalent electrical circuit in parallel,
I
E=R(l,—-1)=LDI [=——F—F——
(h=0 1+ (L/R)D

Comparison of these equations yields an inverse temperature-current analog as in table.

Thermal Temperature || Rate of Thermal Thermal
System T heat flow Resistance Capacitance
Q Ry Cr
Electrical Current Voltage Reciprocal of inductance
System 1 E Resistance L
1/R
24
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Representation of Fluid Systems

(Incompressible Fluid):

S T T T T T T T T T T T

For incompressible fluid, density is AR

constant with variable tank volume. The Flow [ ¢, ===
Figure shows an incompressible fluid system Restriction |—————-____
in which the external pressure (P,) is the Q AT
input while the height of fluid into tank (H) — 5 Iy iRkt
is the output. To present the block diagram Rp

representation for the incompressible fluid

system,

1. Volume rate of fluid flow (Q) is proportional to pressure drop.

- Lp—p
Q—R—F(1—)

Where, Ry is the Equivalent Resistance of Fluid flow. Since, P; — P is input and

is output, the block diagram representation for this process is,

P, 4}- PP Ri Q
F

P

. Time rate of change of height of the fluid (dH/dt) into a tank is proportional to the

volume rate of flow into the tank.
0 dH dH

K — =A—
dt q dt
Volume Rate of flow into a tank is,

Q = ADH
Where Q is input and the height of fluid H is outpuf,

Block diagram represents for this process,
Q (1/4) H

- —
. Automatic Feedback Flow,
A A
= ADH = —DP = CzDP Cr=—
% pg i " pg
Where, C; is the Equivalent Fluid Capacitance. Since, Q is input and P is output,
1
P = CF_D Q
Block diagram represents automatic feedback process,
0 1 P
(il >

Overall block diagram representation of incompressible fluid flow system,

25
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Py 4 P,—P 1 Q (1/4) | H
» S > >
Rf D
| P
1
CrD

To simplify the above block diagram some steps should be taken into consideration,
1) Using the rule of moving a take-off point a head of an element,

Py 4 Pl_P. 1 Q | (1/4) H
_ Rr b
P
1 B D
CeD | (1/4)
2) Using the rule of combining blocks in cascade,
P, (1/4) H
R:D (
A
Cr
3) Using the rule of eliminating a feedback loop,
(1/4)
P; RgD H
— 1 L /a4 g

And the ftransfer function or the mathematical differential equation of operation is,
H Cr/A
G(D) =—= G/
P, 1+ RpCiD
The time constant of the incompressible fluid system is, 7, = RzCr , also the steady-state
gainis, K = (Cz/A), yields the first order differential equation,
K
1+TSDP1
The general solution or the dynamic response for the first-order differential equation of

operation for a unit step input (P, = 1) is,
t
H@)=K(1—67g

In which the response of the system fo a unit step input could be shown in the Figure,

H =

26
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Py (t) )

Unit Step Functior

2

0

H)A

Slope = K /7,

Analogies of Incompressible Fluid Systems:

1. Direct Pressure-voltage Analog:

Incompressible fluid system could be replaced by an equivalent direct electrical
circuit as shown in Figure,

—_— 0

For fluid system, the mathematical differential equation of operation is:
1
Rp

For equivalent electrical circuit in series,

1
I =—(E, ~E) = CDE

Comparison of these equations gives a Direct Pressure-voltage Analog as in the table.

Py

P=——
1+ RpCyD

Ey
1+ RCD

Fluid System Pressure Volume Rate of Fluid Fluid
p flow Resistance || Capacitance
Q Rp Cr
Electrical Voltage Current Resistance || Capacitance
System E I R C

2. Inverse pressure-current Analog:
Fluid system could be replaced by an equivalent inverse electrical circuit as in Figure,

]

E

I

v

n »
»

o

For Fluid system, the mathematical differential equation of operation is:

1
Q =—(P, — P) = C;DP
Rp

27

Py

P=——"+—
1+ RpCyD
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Mathematical differential equation of operation of parallel electrical circuit is:

Iy

position).

where t = fL

and x = L0

the associated block diagram.

22 24 2 24 2 24 2 24 24 26 24 24 24 24 24 2 24 2 24 2 24 4 2 24 4 2 24 4 2 26 26 2 26 24 20 24 24 2 24 24 2 24 24 2 24 24 2 26 24 2 24 24 2 24 24 2 24 24 2 2 24 2 2 24 2 2 26 2 2 26 26 2 24 24 2 26 24 26 26 24 26 26 24 2 26 24 2 26 24 2 0 4 2 %

designated by f ( and x are zero at the reference

1) Determine the equation relating f and x.
2) Determine the relationship between t and 6

28

E:R(Il—l):LDI I:m
Comparison of these equations gives an inverse pressure-current analog as in the table.
Fluid System || Pressure || Volume Rate || Equivalent Fluid || Equivalent Fluid
p of flow Resistance Capacitance
Q RF CF
Electrical Current Voltage Reciprocal of inductance
System I E Resistance L
1/R
Home Work:
Q1: The lever system shown in Figure is drawn in its
reference position. The variation in spring position is
designated by x and the variation in applied force is L L

S
HE
L= 4_| -

Q2: For mechanical system shown in Figure construct the equivalent Grounded-Chair
Representation and determine equations relate f and x, f and y, x and y.Then represent
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% Chapter 3

REPRESENTATION OF CONTROL SYSTEMS
Operating characteristics Determination of control systems are based
on information obtained by overall block diagram representation.
I. Armature Controlled DC Servomotors:
In armature controlled DC servomotor shown in Figure where voltage
E, is input and 6 is output, the field current I, is constant.

1. DC Motor:
Torque developed by DC motor is,
T = K, 01,
Where, K, is constant of motor and, @ is magnetic flux of the field,
D = K,If T =K K,
let, K, = KK, T = Kplfl,
Armature current I, is input and torque T is output, Block diagram shown in
Figure: I, .

— Kplp  ——

2. Torque balance:
Torque balance of output shaft DC motor,
T—T,—T,;—T, =]D?0 T—-T,=(D?+ B,D)6
Where T is load torque,
T—T,=(JD+B,)8
Torque difference (T —T;) is input and angular speed 0 is output,
. 1
0 = D+B, (T —T,)
Block diagram of torque balance is represented as shown in Figure,
T;,

T +¥T—T, 1 6

v
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3. Counter Voltage E. (feedback Process):
Voltage E. is considered as counter emf induced by rotation of an
armature inside magnetic field,
. = K00 0 =Kl E. = K,K31:0
let, K. = K,K; E.=K.I6
Angular speed @ is input and E. is output, then block diagram of this
feedback process is shown in Figure,

/4

. 0

E

L> K.If < S _F | E
bc Kclf

4. Electric Circuit:
Electric circuit equation of an armature controlled DC servomotor is,

L
E,—E.= (R, + L,D)I, or, E,—E.=R, (1 + R—“D) I,
a

Let, 7, = R—“ time constant of armature circuit,
E,—E, = R,(1+1,D)I,
Voltage drop (E, — E.) is input and [, is outpuft,

1/Rq
lo = 7o (Ba = O

Block diagram representation of elec‘rmc circuit is shown in Figure,
E, +Ea—E:| 1/R, | I,
1+71,D

7

Ec

Overall block diagram representation of an armature controlled DC
servomotor is obtained by combining all the processes and components as
shown in Figure,

Control Elements 7 Controlled System
(Controller) L (System to be controlled)

Mathematical differential equation of operation could be derived
« algebraically from overall block diagram representation,

N

\\\\\

/4
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z

4

14

4

14

4
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. (1/R,)
% 6 =|(E, — K 1f9)—aDKm1f — Ty DTE
~ (1/R)KmlrEq — (1 +1,D)T,
(14 1,D)(JD + B,) + (1/R) (Kl ) (K. )
General Block Diagram Representations of a Control System:

1. General block diagram representation of a control system with two inputs
and single output (MISO) is shown in Figure,

u\LDisTur‘bance Signal
Disturbance
B .
Reference Control function elements Controlled
input elements elements _|a  controlled System  Vvariable
v A r(t) + e m _|_+ G, (D) c(t)
Command G, (D) 2
Signal -

Feedback elements

H(D) |€

Mathematical equation of operation of general control system with two

inputs and one output is,
c(t) = G1(D)G(D)r(t) + G, (D)d(t)
1+ G1(D)G,(D)H(D)
Functions, G,(D), G,(D), and H(D) also may be written as:

N¢4 N _ Ny
G1 G2 H

Where, N;; is the numerator of G, and Dg, is denominator of G, and so on.
General equation of operation is,
c(t) = Ng1Ng2Dyr () fNGZDHDmd(t)
Ng1Ng2Ny + Dg1Dg2 Dy
Overall block diagram representation of an armature controlled DC
servomotor could be rearranged as general block diagram representation,

A I 1+7,D

Mathematical differential equation using general equation of operation,
Ng1Ng2Dyr(t) + Ngo Dy Dg,d ()

c(t) = —
NgiNgoNy + Dy D, Dy
3
S gy gy gy gggggggygggggggygy



N
AL Farahidi University
& Aeronautical Technical Engineering 2019-2020

% §— (1/Ry)KmlrEq — (1 + T,D)T,

(14 1,D)(JD + B,) + (1/R) (Kl ) (K. )
& 2. General block diagram representation of a control system with single input
and single output (SISO) is shown in Figure. r(t) 4 e c(t)

ct)=exGD), e=r(t)—b,  b=c()*H(D), " G(D)
?(t) = [r(®) — c(®H(D)]G(D) b D)

Transfer function of a control system is determined as,
c(t) G(D) . _ Ng _ Ny
r(t) 1+ G(D)H(D) Since,  Gp =7 Ho =7

c(t) NgDy

r(t) NgNy + D;Dy

Rules Block Diagram Reduction:

1. Combining blocks in cascade

r C T C
ﬁ Gl > GZ Gg % ﬁ GleG?) %

2. Combining blocks in parallel

r +e~ C

Gy
‘ T 5 6,76, >
G

3. Removing a block from a forward path

r G +o € e Gi |4 €
1 —> 2 -
+ ‘ G, +EiE
G r — c
2 % Gl+GZ %

4. Eliminating a feedback loop

c(t)
r(t)+ G (D) r(t) G(D) c(t)
T TEcOHD|
H(D)

5. Removing a block from a feedback loop

") ) rof 1] + 0
@ I HD) _J)—r?_)‘ CACOLICY T
H(D)

r(t) G(D) c(t)\
|17 G(D)H(D) i

6. Combining interconnected summing points j
\ S ssssss

I

/4
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4

7/

/4

Z
/4
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7. Moving a summing point behind an element,

b
J— a T AN —_—
BN e Ik SN Y. i 56D [ 716D S b
b 1/6(D)
T,
8. Moving a summing point ahead of an element,
+ (a —b)G(D) + (a—b)G(D)
a G(D) ——— a—> G(D) —>?—>
b G(D)
b
9. Moving a take-off point behind an element,
a——> G(D) b aG(D)) GT G(D) _A)
b G(D)
b ¢ I
10. Moving a take-off point a head of an element:
b = aG(D) b = aG(D)
a GD) ——> a—> G(D)—I/A
a 1/G(D)

a <—

Example 1. Use block-diagram algebra to simplify the block diagram shown in
Figure and determine the transfer function of the system.

H, (D)

r—»((t) + i G,(D) ], G,(D) C(t)=
H,(D) f

A
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1. Using the rule of moving a summing point behind an element
7 H,(D) |
G1(D) l
r(t) 4 + c(t)
G1(D) G(D) >
H,(D)

2. Using the rule of combining interconnected summing points

H,(D) |
G,(D)

t
| G,(D) j—' G,(D) l <,
H,(D)

3. Using the rule of moving a take-off point a head of an element

r(t) +,

H,(D) |,
_ G(D) |
r(®) & . (D) (D) JEEOR
H,(D)
' G2(D)

4. Using the rule of combining blocks in cascade

(D) |
AN
- O
Ok o 6,(0)G,(D) —
Hy(D) |,
G, (D)

5. Using the rule of combining blocks in parallel

O 6,(D)G,(D) <,

\ 4

H,(D)  Hy(D)
G1(D) ~ G,(D)

6. Using the rule of eliminating a minor feedback loop

r(t) G1(D)G,(D) c(t)

EEE— H.(D) | Hy(D)
+ (25 + 22 61(D)G,(D)
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Transfer function of the overall control system,
c(t) G,(D)G,(D)

t) Hy(D) | Hz(D)
T 14+ (25 +20) G(D)G(D)
Example 2. Use block-diagram algebra to simplify the block diagram shown in

Figure and determine the transfer function of the system.
Gs
‘ c(t)
Gy

r(t) + + G,
H,

1. Using the rule of moving a take-off point behind an element

/4

Gs

+ c(t)
t) +
() O +[f G, G + G,

H,G, H,y ‘—]

2. Using the rule of combining blocks in parallel

r(t) + c(t)
(1) + G, G, + G, 1 G,

H,G, Hy

3. Using the rule of eliminating a feedback loop

r(t) + Gy P Gy c(t)
1+ H,G,G, 2+ 03 — 1+ H,G,

4. Using the rule of combining blocks in cascade

r(t) + G1G4(Gy + G3) c(t)

_f (1+ G1GHy)(1 + Gy Hy) l

5. Using the rule of eliminating feedback loop

G1G4(G2+G3)
r(t) (1+G1GoHy)(1+G4Hy) c(t)
G1G4(G2+G3)
(14+G1G2H,)(1+G4Hq)

v
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% @ _ 6164(G, + G3) Transfer Function
r(t) 1+ G,G,H,))(1+ G,Hy) + G,G,(G, + G3)

« Example 3. Use rules of block-diagram algebra to simplify the block diagram
shown in Figure and determine the closed loop transfer function.

- c(t)
Tﬂtﬁ% G, |—e>
H; H,

1. Using the rule of moving a summing point behind an element

1/G, |« H, |
r(t) + +, + ‘ c(t)
G [ G ﬂ - V
Hy H,

2. Using the rule of moving a take-off point a head of an element

1/G, H, 1/G, |*
+ o+ + c(t)
r{Gl G W Ga G, 11—
Hy It H,

y N

A

v

<
<

3. Using the rule of combining interconnected summing points

1/61 H3 1/G4 <
c(t
Hy Hy e
4. Using the rule of combining blocks in cascade
Hy |
_ G1Gy
r(t) + c(t)
_+ GlGZ 6364- G
H, H, [«
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/4

Hy
G1Ga

r(t) n | G1Gy G3G, c(t)
1+ H,G,G, 1+ HyG,G,

6. Using the role of combining blocks in cascade

H,
G1Ga

A

r(t) + G1G,G3G, c(t)

7. Using the rule of eliminating a feedback loop

G1GG3Gy
r(t) (14H,G1G,)(1+H,G3Gy) c(t)
—> H3G162G364 g

1+

G1G4(1+H1G1G2)(1+H,G3Gy)

Finally the transfer function of the overall control system is,

G1G;G3Gy
c(®) — (1+H1G1G3)(1+H3G3G,) 4 GG,
r(t N H3G1G,G3Gy — 1
1+ GG (L G o (146 oo (L T H1G1G2) (1 + HyG3Gy) + Hs

Example 4: Use block diagram reduction techniques and find closed loop
transfer function of the system whose block diagram is shown in Figure.

1. Using the rule of moving a take-off point behind an element
> G4

t + + ot
r(t) + + G, 62 J e + ()

/4
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
» ©
Z
/4
Z
/4
Z
/4
Z
/4
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r(t)+

2019-2020

r(t)

Gy
+  c(t)
+ + +
_’Q_’Q—’ Gl 6263
H, |4
H,G,
3. Using the rule of combining blocks in parallel
+ + )
G, "T‘F_—' G263 + Gy ]‘ >
H,
HlGZ

r(t) +

r(t)+

r(t) 4 +

4. Using the rule of moving a take-off point a head of an element

Hy

C(t)
A(f—o G,G3 + G, —r>
H, [«
G, LI
G,G3 + Gy

5. Using the rule of combining blocks in cascade

+ c(t)
5 G, A’T—_—‘ G2G3 + Gy
H, |4
G,G3+ G, |
6. Using the rule of eliminating feedback loop
+ (GG + Gy) c(t)

Gy

| 14 (G,G5 + G4)H,

H, G,

G,G3 + Gy
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7. Using the rule of combining blocks in cascade
r(t) + (G2G5 + G4)Gy c(t)

| 1+ (G,G5 + G4)H,

H.G,
G,Gs + G,

A

8. Using the rule of combining interconnected summing points
H,G,
G,G3 + G,

1

r(t) + (G2G3 + G4)Gy ‘C(t)‘
14 (G,G3 + G,)H,

9. Using the rule of combining blocks in parallel

H162
G,G3 + Gy

1+

r(t) + (G,G3 + G,)G, c(t)
1+ (G,G3 + Gy )H,

10. Using the rule of eliminating feedback loop
(G2G3+G4)Gy
r(t) 1+(G2G3+G,)H; c(t)
n ( (G2G3+G4)Gy )(1 H,Gy )
1+(G2G3+G4)H, G,G3+Gy
c(t) _ (G,G3 + G4)Gy

Transfer Function

r(t) 14 (G,Gs + Gy)(H, + Gy) + G,G,H,
Block Diagram Reduction for Multiple Input Single Output (MISO):
Superposition Method is used to obtain the mathematical differential
equation for multiple inputs single output (MISO) control system by setting
all inputs except one equal to zero. Consider feedback control system with
two inputs and one output as shown in Figure,
u (Disturbance)

+ + ¥t c

r G,(D) G, (D) —I—>

H(D) |€
1. Set the disturbance input u =0
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+

r G1(D) > GZ(D)T—)Cr

H(D) [€
2. Using the rule of combining blocks in cascade

r JE@(D)@(D) o
H(D)

3. Using the rule of eliminating feedback loop

/4

G1(D)G,(D)
T Ty a0G0HED) |
. = G1(D)G,(D) - Cr G1(D)G, (D)
" 1+ G,(D)G,(D)H(D) r 14 G,(D)G,(D)H(D)

4. Set the reference input r =0

u
+ Y+ Cy

SF—> G1(D) G,(D) —I—>
H(D) |

(N

5. Using the rule of moving a summing point behind an element
\[/u
1/G,(D)

¥

s G1(D) G,(D) —I—>Cu
H(D)

6. Using the rule of combining interconnected summing points

u—s>{ 1/G,(D) —?:61 (D) GZ(D)—]-—ﬂu
H(D)

7. Using the rule of combining blocks in cascade

u—> 1/G,(D) G1(D)G,(D) Cu

H(D)
8. Using the rule of eliminating feedback loop

12
ij

/4
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4



AL Farahidi University matic Control Engineerin
Aeronautical Technical Engineering 2019-2020

/4

[ aoeo .
LA YOW) P R e Ay [

9. Using the rule of combining blocks in cascade,
G,(D)
1+ G,(D)G,(D)H(D)

u—> +

—> Cy

o =T G2(D) . o G,(D)

14 6,(D)G,(D)H(D) u 1+ G,(D)G,(D)H(D)
Principles of superposition method, c¢=c,+¢,

G1(D)G,(D)r — G,(D)u _ G1(D)G(D)r + G, (D)u

€= 1+ G,(D)G,(D)H(D) 1+ G,(D)G,(D)H(D) 14 G,(D)G,(D)H(D)
Example 5:
Use techniques of block diagram reduction to find the closed loop transfer
function of the control system shown in Figure.

H, <€

Solution:
1. Using the rule of eliminating a feedback loop.

H, |e

2. Using the rule of moving a take-off point a head of an element
1/G;

13
ij

L d ddd t ttttdddd e
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% 3. Using the rule of combining blocks in parallel
u
r 3~ Sl ¢ e G, — 1+ (1/G,) B> G —c>
b L 1+ G3H,
] H) &
Hy |«

4. Using the rule of combining blocks in cascade

Gs3[1+ (1/G)] c
1+ GoH;

v

T
Juiy
N

5. Using the rule of eliminating a feedback loop
u

r £ G t G, G3[1+(1/Gy)]| ¢
-

_ 1+ GZHZ 1+ G3H3

\ 4

H, [€—

6. Using the rule of moving a take-off point a head of an element
u

r 4 G. | 1 G2 G3[1+(1/G)]| ¢
_;E ! 1+ GZHZ 1+ GgHg

1+ G3H,
G3[1+ (1/G,)]
7. Using the rule of combining blocks in cascade

u

Hy

N

r o+ G + G,G3[1+ (1/G,)] ¢

B (14 G,H,)(1 + G3H3)

H,(1+ G3H3)
Gs[1+ (1/G,)]

Using method of superposition,
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8. Set the disturbance input u =0

Gy

GoG3[1+ (1/G,)]

(14 G,H,)(1 + G3H5)

Hi(1+ G3Hs)

G3[1+ (1/G,)]

9. Using the rule of combining blocks in cascade

r

+

—>

G1G,G3[1+ (1/G,)] |
(1+ G,H,)(1 + G3H3)

Hy(1+ G3Hs)
G3[1 + (1/G>)]
Using the rule of eliminating a feedback loop
G1G,G5[1 + (1/G,)]
(1 + G3H;)(1 + G,H, + G,G,H;)
G1G,G3[1+ (1/G,)]

" T+ G3Hy) (1 + G,H, + G,G,Hy)
11. Set the reference input r = 0

10.

r >l

v

u

_I_

G,G3[1+ (1/G3)]

Gy | (1 + G,H)(1 + GoH,)

H (1 + G3H;)
G3[1+ (1/G,)]

12.  Using the rule of moving a summing point behind an element
‘Lu
1/G4
ny Sl GoG3[1 + (1/G3)] Cu
) ! (14 G,H,)(1 + G3H3)
H,(1+ G3H53)
G3[1+ (1/G,)]
13.

Using the rule of combining interconnected summing points
15

/4
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4

S sgssssss

/4

S

7
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u — G,G3[1+ (1/G;)] Cy
% —> /6, Gy (1+ G,H,)(1 + G5Hs) r—

H,(1+ G3H3) y
G3[1 + (1/G>)]
14, Using the rule of combining blocks in cascade

u — G1G,G3[1+ (1/G,)] Cy
—> /6 (1+ G,Hy)(1 + G3Hz)

Hy(1 + G3H;)
Gs[1+ (1/G)] |

15. Using the rule of eliminating a feedback loop
G1G2G3[1 + (1/G,)] -
“ M (1 + G3H3)(1 + GoH, + G, G,Hy) > Cu

16. Using the rule of combining blocks in cascade

G,G3[1+ (1/G,)] R
U= - (1 + G3H3)(1 + GyH, + G1G,Hy) > Cu
o = G,G3[1+ (1/G,)]

T+ GaHs) (1 + GoHy + G, GoHY) &
Principles of superposition method, c¢=c, +c¢,
= G1G2G3[1 + (1/G,)] . GoG3[1 + (1/G,)] °

(1+ G3H3)(1 + G,H, + G,G,H,) (1+ G3H3;)(1 + G,H, + GG, H,)
Mathematical differential equation of operation,
= G1G,G3[1+ (1/Gy)]r — G,G3[1 + (1/G)]u

(1+ G3H;)(1 + G,H, + G,G,H,)
Also using general equation of operation for two inputs and single output,
Ng1NgzDyr(t) + Ng, Dy Dg1d(2)

«(e) = Ng1Ng2 Ny + Dg1Dg2Dy
u
r 4 c. | + G,G3[1+ (1/G,)] ¢
_ ! (1 + G,H;)(1 + G3H3)

H,(1+ G;H3)
G3[1+ (1/G,)]
16
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% o= G1G2G3[1+ (1/GR)]1G3[1 + (1/G)]r — GoG3[1 + (1/G)]G3[1 + (1/G)]u
G1G,G3[1+ (1/G2)]H, (1 + G3H3) + (1 + GoHy)(1 + G3H3)G3[1 + (1/G,)]
_ G1GG3[1 + (1/Gy)]r — G,G5[1 + (1/Go)]u
(1+ G3H3;)(1+ G,H, + G,G,H,)
II. Representation of Incompressible Fluid Systems:
Flow of incompressible fluid through a restriction shown in Figure,

B

Upper Valve |l |
atm

oQ

1. Volume rate of flow at which liquid is stored in upper tank,

A
Q;— Qo =ADH Qi—Qo=;DP
Let % = Cp Equivalent fluid capacitance
Qi — Qo = CpgDP
Since (Q; — Q,) is input while and pressure is output,
P=— (Ql )
1 P
%)) '

2. Out volume rate of flow Q, is proportional to pressure difference
across lower valve,

1
Qo =75-(P—Pp)

Rp
Since P — P; is input and Q, is output,
Py
pi X P—P 1 Qo
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% 3. Since, P =pH+ Py, P, = Py P=pH+P P—P, = pH
1 1 P
P-P)=—pH=—H
let K= % and Q, == H is output and Q, is input,
H=KQ, Qo H

> K —

Overall block diagram representation of incompressible fluid flow should
be obtained by combining the previous individual block diagrams:

1 | pxp—pr| 1 Qo H
rD Ry

|
l

Use techniques of block diagram reduction to determine transfer function,
1. Using the rule of moving a take-off point a head of an element

Py
U 4eQ=Q | 1 | P{HP-PF 1 10 m——1H
CrD Rp .
— Qo
1/K
2. Using the rule of combining blocks in cascade

P,

O 4e0Qi=0Q, | 1 | P (&P—Pf K | H

CeD R,
— @

1/K

Mathematical differential equation of operation for flow of incompressible
fluid could be obtained using general equation of operation,
c(t) = Ng1Ng2Dyr(t) 'l__'NGZDHDGld(t)
Ng1Ng2Ny + Dg1Dg2 Dy
_ KKQ; —KKC¢DP,  Q;— C¢DP,
K+KRpCpD  —(1 4 RpCpD)

Since, R;Cr is equal to t; which is the time constant in control fluid system,
Ql - CFDpl 1 CFD

= H=r——Q—-—7———P

- (1+t,D) = (1 + 7,D) = (1 + 7,D)
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Linearization of Nonlinear Functions:

Most powerful methods of system analysis are developed for linear
control systems. In fact, actual control systems contain some nonlinear
elements which in turn yield nonlinear differential equation of operation. Then

engineering nonlinear relationships need to be Y 4
linearized. Consider a nonlinear function as A——F———— K1)
shown in Figure, - f@._._ '
Y = Y(X) | |
) dy > Y |
Y-V, = AY = —| AX LV Ve
dX daxl; v | Xy, Y1) |
dy o
i | |
General procedure for linearization: : |
Y — Y(XllXZ"""' ....,Xn) Xl- ! :
oy = 200 ax, + 2| ax + 20 ax AN
axX, |, 1t X, |, 2t ax,l —n -
Variations of variables abouT reference values,
aY aYy
Y-V = 6X1 X1 —Xy) + = ox, |, (X = Xgi) + -+ + X, i (Xn — Xn)
_ ay £ aY 4 aYy
Y= ax, T ax,l.
Evaluation of partial derivatives at reference condition yields constants,
oy oy )4
7 ax, 27 ox,, =

Linear approximation,

y == C1x1 + C2X2 + -+ Cnxn
Example 6. Determine the linearized representation of mass-spring damper

Solution:

differential equation of operation,
F = (MD?+BD +K)X — Mg

lF

F=F(X)
Linearization yields,

oF
AF = —| AX
ox|,
Variations of variables from reference values,

oF
l
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OF
= — - =
At reference condition,
oF d
= — MD?+BD+K)X—-M = MD?+BD+K

f=(MD?+ BD + K)x

Linearization of Operating Curves: ,

Operating characteristics of many components in control systems are

given in the form of operating curves rather than equations. A family of
operating curves of constant values of Z shown in Figure,

Y =Y(X,2)

Linearization about a reference point gives, Y A 7t

o) O e

Ay = O_X OZ 80 ¢ E
)¢ )¢ 13
y-rn= axl, 60 6 N4 NF

M e a_Y ) AN
Y| AY Yy — YC 40 — 80
aXl; ~ DXlzep0  Xp—Xc 1200 —800 —0d 800 1000 1200  x
Similarly,
Yy AY Y,—Y; 40-80 —40
9Zly = 8Zlyor000 ~Zp—2, 15-25 —10 *

Linearized mathematical differential of operationis, y = —0.1x + 4z

Example 6. A typical family of operating curves
for an engine is shown in Figure. Usually such &
curves are  determined  experimentally.
Determine the linearized mathematical equation
of operation.

Solution:

Speed N is a function of the rate of fuel flow Q
and engine torque T, | :
N=N(@Q,T) 0 W0 120 1.éoo 200 2400 2800

Linearization, Engie speed N, pm
aN aN

Lines of constant
torque (ft-Ib)

Fuel flow @, Ib/hr

n =

Z

Partial derivatives at reference condmon,
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ON dN
C1=%T szﬁQ Tl=C1q+C2t

ON AN 2400 — 1600
Cl = — = — = =

r AQlr_13 32-120
Similarly,
_ON| _ANp o 2730-1530

2T 9Tl, " ATlyens  80—-160
Lmear‘uzed mathematical equation of operation is, n =66.7q — 15t

III Representation of Hydraulic Servomotors:
A hydraulic servomotor consists of two components, hydraulic
amplifier with walking beam linkage as shown in Figure,

R b

R e Ve O P es

BT s Pl

Balanced Valve

Drain 4—45/__
Supply j 5 [iiété'r%'
\

—_— 2
Pressure ] B

Reference Position  Drain «— |1
e=o04 [ :

A = == —— == T

X ®p=r i v
— e a \ b >l

1. Hydraulic Amplifier:

Rate of flow Q to the cylinder is a function of valve position E and
pressure P drop across the power piston as shown in Figure with the
operating curves for hydraulic amplifier.

WY oA
S it it Attt
Balanced . 0.002
Valve | 3 T
Dram - 2 0.001 \\
i 3 0.0 —
3 — 1 11 L1 1T 5P
Sl = g R E — v
Pressure {1l 0,001
Line?\
Dra|n Constan \0002
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% Linearization yields:

Ae = ﬁ oPg
a0
Q—-0Q; = 2E|,
a0
q= ﬁ e+ ﬁ
? ?
LeTlCl:%p Clnd CZZ_%E q=Cle—C2p
Force transmitted to the load by power piston,
A=uY_upe _ e = ce—2Y e
pa = dtz y p= A y q=C(,€ A y
Variation in rate of flow g into a cylinder,
q = ADy
_ CZM 2 _ 2 _ (Cl/A)
ADy = C,e 1 Dy let, t=CM/A _D(1+TD)e
Position y is output and e is input, transfer function of hydraulic amplifier,
Y _ (C,/4)
e D(1+1D)
Block diagram representation of hydraulic amplifier is:
e (C1/A) y
p(1+tD) [

2. Walking beam linkage:
A walking beam linkage connects input (reference) position x, valve position
e, and output power piston position y as shown in Figure,

Reference Position

E=EXY) Linearization,

Value of partial derivative a—El is obtained
0Xly

from the Figure,
oE

axly

_AE
AX

b
a+b




AL Farahidi University ering
& Aeronautical Technical Engineering 2019-2020

% Value of partial derivative g—ﬂx is obtained from the Figure,

OE| _2E| _ __a
oY lx T AY X - a+b
b a
“Ta+b a+b’
1
For, a=0>b e=-(x-y) T
. . 2 ) (x — Fixed)
Block diagram representation of walking-beam
linkage is:
+ 1
X - p—c
RE

Overall Block Diagram Representation of Hydraulic Servomotors,

X + 1 e (C1/4) y

5 ™ D@1 +1D)
|y

Using the rule of combining blocks in cascade yields,
x 4+ (C./24) y

D(1+ D)
|y

Using the rule of eliminating feedback loop yields,

x (C1/24) y
| D(1+1D) + (C,/24) >

A

Let 7, = 24/C, then closed loop transfer function is:
y 1

x 1+ t,D(1+1D)
Note: For neglected load (M = 0), accordingly 7 = 0 then,

X + (G,1/24) y

Y, D T"

Using the rule of elimina’ring feedback loop,

x 1 y
1+1,D

And closed loop transfer function,
Yy (C1/24) 1 1

x D+ (C/24) 1+ Q2A/COD 1+1,D
23

/4
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z

7/

7/

7/

g g gy g gggy
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%IV. Speed Control Systems:

A controller of speed governor automatically contr ols the speed of an
& engine as shown in Figure.

Desired 43000

Throttle Lever Speed
@ () > —2000 N,
z I

o Ll

y Valve
X Drain — )
Suppl j : -
PPY / - Piston."
Pressure :
Drain :'_\
E— 5 T Increase Flow
Flow Control |
Valve | lDecrease Flow

< 7 >  Fuel Flow
\E’-/ﬂ to Engine

1. Throttle lever
Position of throttle lever sets desired speed as shown in Figure,

Desired

3000
Speed
Throttle Lever

T@ o > —12000 Nin
V4

CF
1000
Position Z is a function of desired speed:
Z = Z(Nin)

Linearization,

YA 0z

zZ = N, inm let, C, = N, z = Cngp

Desired speed n;, is input and z is output,

nZZ =C, _ i C, -z
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% 2. Fly-weight Speed Governor
In fly-weight speed governor shown in
Figure, centrifugal force is,
F, = MRw? w = C4Ny
Where, C; is gear ratio and N, is output
speed,

Fc = C;MRN}
Take moments about the pivot,

Ea =F:b Fg = ZRCZMRNOZ
2 a9

Fs = C;C,RN}
Linearization,

_O0F)  0Fs
fs =R ly, " * aN,l 0
Let, ¢, =25 =c.c N2 d C, =25 =2¢.C.R,N
et Ls =3, = brbrlVoi ang, 4T on,l, — 2brtrftilloi
fs = G3r + Cyng
Variation in force exerted by the spring is:
fs = Ks(z — x) Ks(z —x) = G37 + Cymy
b

Since, r=—ox= —Crx Ks(z — x) = —C,.C3x + Cyny

Mathematical equation of fly-weight speed governor component,

X = m (KSZ - C47’l0)
Since x is output and (Ksz — C,ny) is input,
7 KSZ + KSZ - C4_n0 1 X
—»| K —»(%) > >
S _ KS_CTC3

Cs

T
3. Hydraulic Servomotors:
Overall Block Diagram Representation of Hydraulic Servomotors when
load is neglected,

| —
o

(C1/4) y

X_ g XY .
? 2 T'
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% 4. Control of Fuel Flow:
Flow of fuel through flow valve to the engine is a function of positiony,

Q=0)
Linearized yields,
_9q
a9Q
LeT, C5 = a_ Then, q = Csy
Yl

Position vy is input and q is outpuft,

L, CS _q_>

Overall block diagram representation for the speed controller:

|
[ 1

in " + 1 | '
— C, < K — ; c- k1
1 HLs PR e gyl 1
Throttle | Co | Errors igndl i Fuel Flow
Lever 1 b 7 | :
No | Fly-weight
Governor
In the speed control system for gas turbine of a jet airplane as,
NO ~ NO (Q; T)
Linearized,
JON, dN,
n, = +— t
i
N, aN,
LeT C6 = 90 i and C7 TS ar |; Then- Ny = C6q — C7t
Torque balance available to accelerate the engine is:
t—t,=Ja=J]Dn, t=JDn,+ ¢, n, = Ceq — C,(JDn, + t;)
" :C6q_c7tL: Ce ( —ﬁt)
°" 14C,JD  1+C,)D [

Since n, is output and (q — Cgt;) is input, the block diagram representation
shown in Figure,
o

C;/Ce
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Overall block diagram representation of speed control system for the gas
turbine of jet engine,

t

c, Lo

~7 System to be
Error Signal Ce b C7/Ce Controlled
Nin z +\, 1 |xtk 1 el «c/nlY |
— > JR— —_
C, K CC. —»(%)—»_ . - T Cs |
- y Cy L i
- q — — L ___________
Ce
Cy

Using the rule of combining blocks in cascade,

Error Signal
in [ + \ 1 x % (C,/24)
L2S _'? 1 % _'(?y 1 >

Cs

Using the rule of eliminating feedback loop,

Error Signal Cr/Co

1 g n
Nin + 1 x| ——— |V C q + Ce 0
— (K A%‘ Ks——crcg 1+%D 5 1+ C;/D

Using the rule of combining blocks in cascade,

, C7/Ce

Error Signal
Nin C.K + Cs q +_ Ce Mo
—p (K¢ 3 (KS_Crcg,)(l +2C_AD) 1+C;JD
I C,

Left,

Cs
K, = , T, = 24/Cy, T, = (4], Cg =0C,/C
1 Ks—C, Cs 1 /Cy 2 7J 8 7/Ce
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Overall block diagram representation of the speed controller,

oQ

/4

Ce
. + K C n,
Nin 1 q + c\!b 6
—> (3Ks 1 1+ 1D 1+ 1,D

Using general equation of feedback control system with two inputs and one
output,

C(t) = Ng1NgoDyr(t) + NgoDg1 Dy d(t)
Ng1Ngz Ny + Dg1Dg2 Dy
Mathematical differential equation of gas turbine in a jet airplane,
_ GCeK Ksniy — CeCs(1+ 1,D)Y;
"~ CuCeKy + (1 +1,D)(1 + 17,D)

o

Or,

~ K,CsC,K, CsCs(1 + 7,D) .
Mo = 0K+ (L+ D)1+ 1,D) ™ ™ C,CeK, + (1 + 7,D)(1 + 1,D) -
V. Representation of Jet Pipe Amplifier:

A schematic diagram of a jet pipe amplifier is shown in Figure. It can be

easily noticed that the position x is input and y which is the position of the
power piston, is output position.

77,

b Load

. Since the compression of spring K; is (x — e) and the compression of K,
is (e +y), then at the reference position,
Ki(x—e) =Ky,(e+y)

le - sz = (Kl + Kz)e

el t dtltd et o e
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/4

=—(K;x— K
e K1+K2(1x 2Y)

Since e is output and (K;x—K,y) is input, the block diagram
representation shown in Figure,

K, x K,x — K 1
X 1X + 1 2Y e
" K '_? 1K+ Ky

K;

B

2. For a typical jet pipe, position of jet pipe at the nozzle end w is twice
position of jet pipe at centerline of springs e, then:
w = 2e
Since position e is input and w is output, the associated block diagram is,

e

3. Rate of flow q to the power piston, Q@ = Q(w), linearization yields,

_ 9e 9| _ _
_awiw' Let, awi_C q=Cw

q
id C

v

4. Volume rate of flow to the power piston is,

q = ADy
Since q is input and y is output,
_(1/4) 1 /4 [ ¥
= Tq D »

Overall block diagram representation of jet pipe amplifier,

x [ K, x bz K1x — Koy 1 e 5w,z q | /| Y
1 K, + K, - 1 b

K,y

K>

Using the rule of combining blocks in cascade,

Kyx on Kyx — K,y (2C/A) u
(K1 + K3)D

X

v

K

Ky
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% Using the rule of eliminating feedback loop,

X Kl

2019-2020

(2¢/4) y

X

The transfer function is,

Using the rule of combining blocks in cascade,

—_

y Ki(2C/A) Ki/K,

v

(Ky + K;)D + K,(2C/A)

Ki(2€/A) y
(K, + K,)D + K,(2C/A)

v

X (Ky + K,)D + K,(2C/A) 1+ (A/20)[(Ky + K3)/K,]D
Let, K =K;/K,, and 7= (4/2C)[(K; + K,)/K,],

And the block diagram representation for jet pipe amplifier is,

y K
x 14 D
X K y
—_— >
1+ D
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Chapter Four
Steady-State Operation

Operating characteristics of control systems are determined by solving §
! their mathematical differential equations of operation. Transient and steady
} state operations are two conditions where time response of a control system
} could be investigated separately. In steady state operation the equilibrium §
state is attained such that there is no change with respect to time of any 3
} system variables. A control system remains at this equilibrium state until it is §
} excited by a change in the desired input or in an external disturbance. A
} transient condition exists as long as some variable changes with time. /
} Steady State Equation (Algebraically):
General Block Diagram Representation of a feedback control system with §

two inputs and one output shown in Figure,

lu Disturbance Signal

Reference Input Control B | Disturbance Function Elements

Elements Elements # Controlled System
v r(t) + m + ¥d(t)
—> 4 | G1(D) —>| G,(D) c(t)

Ct)smr:‘a?d - Controlled
: .
gna Feedback Elements Variable

H(D)

General mathematical differential equation of operation,
G1(D)G,(D)r(t) + G, (D)d(t)

1+ G(D)G,(D)H(D)

Also it could be expressed as,

‘O = 6, D) GMHD)
) AGDIGD) o BG®)
1+ G;(D)G,(D)H(D) 1+ G1(D)G,(D)H(D)
For steady-state operation (D = 0) the steady state constants are,
K¢ = [Gl(D)]D=0 / K¢, = [GZ(D)]D=0 / Ky = [H(D)]D=O
Steady-state equation,

_ AK1Keo BKg>
c= v+ u
1+ K;1Kq Ky 1+ K;1Kq Ky

General block diagram representation of steady state operation is described as
shown in Figure,

Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
%
% c(t) =

%
%
%
%
%
1(D)G,(D) 2(D) %
|
|
|
|
|
%
%
%
%
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System to be
...... Controller  _ . Controlled |
3 I
v | Av + |
. a A | Y KGl . > KGZ C
| N iy __| " I
,, e . T T
For ¢ = v, coefficient of desired input v must be unity,
AKGlKGZ A 1
1 + KGlKGZKH + KH
Kg1Kg2
X Where, constant A is the scale factor of input dial,
A = + KH
KGlKGZ
Also, coefficient of external disturbance u is equal to zero,
BK,, B

=0

1+ K1 KoKy Ki + K1 Ky

G2
It is satisfied only when K¢, is infinite by an integrator in control elements to

g

g

g

g

g

g

g

g

%

% give a (1/D) term. This type of controller is called an integral control system.
% Example 1: J,u

% Determine the steady-state constants
% and the steady state response for the

control system shown in Figure. Select |, —.. ), 1

% constant A such that the coefficient |
% of the desired input v is unity.

Solution: Steady-state constants are,

1 2
Koy =—— =1, Key = ———
K 1+7,.D1,_, G2 1+1,D1,_,

=2, Ky =0.5

Ke1Kez [OD)
Block-diagram representation of steady-state condition shown in Figure,

%

%

%

%

%

: %
A=#+KH ! ———+05=1 %
%

%

%

%

%

%

%

%
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_ AKg1Ke v+ BKg, U
1+ K;1Kqo Ky 1+ K;1Kq Ky
(1)(1)(2) (—=5)(2)

“TrM)05 " TTrm@os)”
Steady-state response of control system,
c=v-—5u
Steady-State Equation (Graphically):
Steady-state equation and steady-state constants could be determined §
graphically from steady-state operating curves which is obtained as follows,
Consider General Steady-State Block Diagram shown in Figure,

u] System to be Controlled

Controller

1. Steady-state equation of the operating controller,
m = (Av — Kyc)K;,, or, m=AK;;v—K;Kyc
a) Constant command signal V or v = 0,

m

AM oM . .
ol =2cl, = acl, = —Kg1Ky Slope of controller operating lines
b) Constant output signal € or ¢ =0,

m —AM|_ oM _ AK;, Vertical spacing between lines of constant V

3

3

3

%

%

%

%

%

vie=g  avle — avie %
c¢) Constant manipulating signal M or m = 0, %
: =2 =Y X Yopizontal spacing between lines of constant V %

%

%

%

%

%

:

:

:

:

;m=0_ACM_aCM_ A
2. Steady-state equation of the operating system to be controlled,
c = (m+ Bu)Kg,, or, ¢=Kz;m+ BKg,u

a) Constant external disturbance U or u = 0,
m AM oM 1 .
<l = acly, = acl, T x%a Slope of the system to be controlled lines

b) Constant output signal € or ¢ = 0:

m __AM| oM

= —B Vertical spacing between lines of constant U

uczo_AUC_c’)UC

c¢) Constant manipulating signal M or m = 0,
_ acl _oac

m=0 AUly — auly

c

u

= BK;, Horizontal spacing between lines of constant U

T .
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Steady-state operating curves for controller and system fo be controlled are
sketched as shown in Figure,

MM
4 U
E [
:AA4 B
G
7/ — Z_ LD AC N
Al
C : D
|
AM : AM
AC 7/ : AC S
; C
Ci

Also steady-state equation is directly determined graphically from the steady-
state curves,

C=C,U)
Linearization,
oC oC
C=—= v TN, u
oC| AKsuKg, oc| BK,,
U 1 + KGIKGZKH aU |74 1 + KGlKGZKH

Example 2:

Reference operating point of a control system shown in Figure is V; = C; =
100, M; = 50, and U; = 10. Determine the steady-state equation algebraically
and sketch steady state operating curves. Then determine graphically the
equation for steady state operation. Select constant A such that the
coefficient of the desired input v is unity.

-5
v + 1 m + 2 C(t)
7 A"?—'_ 1+1,D 1+T2DT
0.5
Solution: Steady-state constants are,
2
K = = 1, K == = 2; K = 0 5
G171 4 71D D=0 G271+ T,D D=0 H
1
= + Ky = +05=1
KeKe, 7 (D(2)

T .
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The equation of the steady-state operation (algebraically),
AKG1Kg BKg>

c = v+ u

. (DM(2) ot (=5)(2) 5
14+ (D05 1+ (1D(2)(0.5)

c=v—5u

< Slope of the controller operating lines,

me LM A kK = —(1)(05) = <05
cly=0 0Cl, ACly=100 cr ' .
% Vertical spacing between lines of constant V
m oM AM
—| == == =AK;; = (M) =1
Vlic=0 av C AV l¢c=100 ¢
Select AM =10 then, o =1 AM = AV = 10
AVlc=100
% Horizontal spacing between lines of constant V
v| _vp v Ky 05
Clm=o  0Cl, AClyese A 1 7
Yl =05, Since, AV =10 then, AC =20
AClm=50
% Slope of the system to be controlled operating lines,
m| _aM _AM _ 1_1_05
Clu=o0 oc U AC U=10 KGZ 2 .
% Vertical spacing between lines of constant U,
m _ oM AM . B=_(-5)=5
c AUlc=100

am =5 Since, AM =10, Then, AU=2
AUlc=100

< Horizontal spacing between lines of constant U,

C| _9G JAG k= 5(2) = —10
ulp=o 0Ul, AUly=so ¢
¢ = —10, Since, AU=2, Then, AC=-20
AUlpm=50
Steady-state operating curves shown in Figure and,
_ocp L oc
“=avl,’ Taul,®

_AC
v AV

_AC
v AU

_Cp—Cc 110-90
veio Vg—Ve, 110—190
Cp—Ce 110—90

V|l VD
Qlﬁ <:|f\

v=100 Up—Up 8-—12

&
&
&
&
&
&
&
&
&
&
&
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
Y/
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
%
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Steady-state equation, c=v—>5u
M AN
v=go0 110 2 =10
60 /
— 8
90 E I L
=
50 C =20
A
40
C
>
80 100 120

Example 3:
A typical family of steady-state operating curves for a proportional
temperature control system shown in Figure,

RRRSRARAARRAARRARRARARARAARRARAAARARARARAARAARARARARRAARAARAARARARARRARARARARAAARARARARARARARAARAAARAAARARARARARARARARARARARARARARAY

a) Determine the equation for steady-state operation about point A.
b) If this were an open-loop rather than a closed-loop system, what would be §
the steady-state equation of operation? 3
>
. T, =20°F 3
Lines of a

Constant Ty, 230 %
120 4~ T, =70°F %
S %

~
S 100 4 T, =120°F %

M
S 804 %
60 + %

1
40 1+ I
20+ | ! | | %
A
l |
. > T
O 50 100 150 200 250 300 ? %
Solution: %
1) Since, T, = T,(Tin, T,), linearization gives, %
t, = Al tin + o, t %
T OTply, " ATl %
oT,| _ AT, _Top—Toc _250-150

aTin Ta ATiTl Ta=70 TiTLB - TiTLC 250 - 150 %
; %
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0T, AT, _Top—Top _180-220
T AT, v Tap—Tap 20—120

Equation of the steady-state operation,
to = tin + 04ta 3
2) For open-loop control system, controller lines should be horizontal §
because Ky = 0,

aT, AT,  Top—Toe 250—150

OTinly, ATy, t..e  Ting —Tinc 250 =150

aT,| AT, Toe—Toy 270130

0oy, T AT, v o Tag—Tay 120 =20

t, = tip + 1.4t,

2 Example 4:

« . .

t A typical family of steady-state o 2000 300

3 operating curves for a unity feedback Nin =000 =200

2 (Ky = 1) speed control system is shown 1500 F 00 $

3 in Figure. At the reference operating 3000 5 3

< oy . 2

§ condition (point A) Ny, =N, = 4000, | B 3

t Q; =1000,and T; = 200. 4 3

% 1. Determine  the  steady-state ¢ %

. 500

% constants and the equation for %
steady-state operation. 7 N,

% 2. With N;,, held fixed at its reference 2000 4000 6000 >§

% value, what is the change in speed %

% N, when the load T changes from the reference value T; = 200 to 300 ? %

% 3. By what factor should the slope of the controller lines be changed so as to %
reduce this change by a factor of 50 ?

% Solution: %

% 1) The steady state constants: %

oM AM . .
% —Ke1 Ky = 5 = acly Slope of the controller operating lines %
% AQ Qp—Qr 750 —1250 1 %
~Raku =71y " Noo— N,z 5000—3000 4
% 9 "Nin=1000 oD oF %
oM AM . . .

% AKg = — c T wl, Vertical spacing between lines of constant V %

% AK AQ Qr — Q¢ 1500 — 500 1 %

% 61~ AN, No=s000 Nine = Ning 5000 —3000 2 %

7 %
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Since K;, = i then A =2

1 oM AM | |
Ke; ocly — acly Slope of the system to be controlled operating lines
1 _ 20 Qp—Qc __ 1250-750 _ 1 B
Kga AN = Nop—Nec _ 5000-3000 1 ' Kez =4
Gz olr=200 NoB—Noc
oM AM _ . .
_p=2 24 Vertical spacing between lines of constant U
ou I AU c
=2 _Q=Qc _ _1500-500 _ o 5
ar No=4000 B Tr-Tg N 300-100 5 ’ B=-5
Steady-state block diagram shown in Figure,
o
-5

N
)
+ ]
N
_13
Q

Nin 5 +?

And equation of steady-state operation,

AKG1Keo BKg, 3
— 4 t =n;, — 10t 3
Mo T Ko KooKy ™ T 1+ Koy KooKy - o = Min = 200 8
2
This equation also could be obtained using as: %
_ L ac 2
“=avl,” Taul,® %
9N, Ny %
"0 Nl AT iy,
dN,| _ AN, ~ Nog— Ny | 5000 —3000 %
ONipl,  DNili_nyo  Ning — Nincl, 5000 — 3000 %
ON,| AN, _ Nop—Nog| 5000 —3000
OT Ingyy AT lypisoe  To—Te 1y, 100—300 %
n, = n;, — lot, %
2) Since N;, is held fixed at reference value then, %
Nip = ANiy = Nip = Nip; = 0 %
t,=AT =T —T, = 300 — 200 = 100
Change in speed N, , %
n, = ng, — 10t, = 0 — 10(100) = —1000 %
3) To decrease the change in speed by a factor of 50: %
dON, AN, n 1 1
o =2 =2 =(-10)— = —= %
oT Iy, ATy, tl, 50 5
Since, %
oN,| _ BK;, 1 oMol __ (5 _ 1§
OT |y, 1+ Kg KKy 5 oT |y, 1+4KgKy 5 %
: %
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Solving for KKy

99 1
KGlKH 27299XZ

Slope of the controller lines must be increased by a factor of 99
Equilibrium:

Equilibrium point is the infersection of line  mp U
of command signal V for controller and load line U M, AN f
for the system to be controlled as shown in
Figure. In which, manipulated variable being NS
. . . B
supplied by controller is the same that required /
to maintain system output at reference point. At >
1 2

equilibrium point A the amount of manipulated
variable M; supplied by controller is same as that required to maintain the
system output at C;. When output is changed to C, which is higher than C; then
point C decreases until equilibrium is attained at point A because My < M,
Response for changing command signal and load (Graphically):

Response of any control system for changing in command signal and load
could be investigated graphically using steady-state operating curves.

1. Finite slope of controller lines: M A v,

* WhenV is changed from V; toV, (V; » Vy) with V1\ s U
load U is constant, a new operating point for M: N\ ‘
controller is at B while system to be controlled M, f
remains at A. Since Mz > M; , output C
increases (dynamically) and new equilibrium point C)
of operation is existed at poin‘r C, G G

_| _ E AKg1Kg
u=0 AV
A7 Kok T

* When U is changed from U; fo U, (U, > U;)
with constant V, a new point of operation for
system to be controlled at B while the
controller remains at A . Since, M; < My,
output C decreases (dynamically) and new

equilibrium point of operation is existed at C.
aCc|  AC BK,

=0 aU T AUl T 1+ Ko KgaKy

= finite value

%

%

:

:

:

=TT KoKeKn %
U + Kg1Rg2 8y %
:

:

:

:

:

%

%

%

%

T .
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2. Infinite slope (vertically) of controller lines:
* WhenV is changed from V; to V, (V, > V;) with load
U is constant, a new operating point for controller
and system to be controlled is at B (new equilibrium B
point). Manipulated variable supplied is equal to the
quantity required without dynamically movement,

M A h V,

B PSS LGS G LGS GGG GGG GG 5G55 555555585555 55155 5955555555555 5555555555855 5 5555555 595:558555:
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c ac _ AC _ AKg1Kgo _ A Cl CZ

u=0 av U AViy 1+Kg1Kg2Ky Ky
* When U is changed from U; to U, (U, » U;) with

v

constant V, a new point of operation for system to " U2
be controlled and the controller is at B (new . B .
equilibrium point). Manipulated variable supplied is
% equal to the quantity required without dynamically M, A
3 movement,
$ ¢ _0C| _ACp _ BKmp C,
3 uly—o  0Ul, ~ AUl ~ 1+ Kg1 KooKy
2 3. Zero slope (horizontally) of controller lines:
% * WhenV is changed from V; to V, (V, » V;) with y
- load U is constant, a new operating point for 0 U
% controller is at B while system to be controlled sl ¢
% remains at A. Ms
% Since, Mz » M, output C increases (dynamically) M v v

and new equilibrium point of operation is existed
% at point C, i G

c ac| AC AK 1Ky
% ;u=0_WU_HU_1+KG1KG2KH_AKMKGZ_1
1
% A7 Kerke:
* When U is changed from U; to U, (U, » Uy)
. . . M A

% with constant V, a new point of operation for / U,
% system to be controlled is at B while the p, B U,
% controller remains at A. y v
% Since, Mz>»M; , output C decreases c “la

(dynamically) and new equilibrium point of C
% operation is existed at C. c, G i’
% ha = O_C AL : = BK;, = max.value
% ulyeo AUl AUl, 1+ Ko KgoKy 2 '
% 10
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Types of Control Systems:

system (Ky =0) fo infinity for an integral control system (K;3 = ).

proportional control system has finite slope.

1. Proportional Control Systems (P Controller): MA
In proportional control systems the coefficient AN

Slope of controller lines (—Kg;;Ky), varies from zero for an open loop control }

A 3

of external disturbance (load) u term is finite .
with finite slope of controller lines as shown in C

Figure. Speed control of gas furbine for jet plane

shown in Figure is proportional control system. C

! 3000
Throttle Lever Nin
79} > 2000

System to be
Controlled
A T
- 1000 ~ Y4

Desired Speed

Proportional Controller

1,

Drain j ;
S | i
upply ;

Pressure ! LT
~—
Drain j_l\—
—

— Flow ?Increase

Fuel Flow to Control l Decreai
Engine \—E—/ﬁ >
C, K Ky Cq CeCs(1 4 7,D) .
= N, —
KiCeCo+ (L +1,D)(1+1,D) ™ K, CcCy+ (1+1,D)(1+1,D) "

Mathematical equation for steady-state operation is obtained by letting D =
C2KsK1Ce CsCo

Mo T TN K GG ™ 1+ K. CoCy -
Also steady-state overall block diagram representation is obtained,

No

RRRSRARAARRAARRARRARARARAARRARAAARARARARAARAARARARARRAARAARAARARARARRARARARARAAARARARARARARARAARAAARAAARARARARARARARARARARARARARARAY

%
%
%
%
|
N
”
|
|
|
|
|
%
%
%
%
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Since Kz, = K; and Ky = C, , then slope of the controller lines is finite and it is
proportional control system. /
Since K;, = Cg,

A=

1
+ Ky =——+C, = CK C,=— +C]

The term C, = 0Z /0Ny, |; is the scale factor for the speed setting dial,
Example 5: :
A typical family of steady-state operating curves for a proportional speed
control system of a diesel or turbine shown in Figure. Determine:
a) Steady-state equation of operation in the vicinity of point A.
b) If this were an open-loop rather than a closed-loop system, what would be §

the steady-state equation of operation about point A.

N

Q
T, = 200

2000

| RN

2000 4000 6000 8000

Solution:

a) Since, N, = N,(N;,,, T)
oN, aN,
N

Ny =

dN,
ON;,

N,

nln
T

tL

AN,
ANm

AN,
AT

_ Nyg—Noc 5000 —3000

" Njg — Nijpe 5000 — 3000

_ Nop—Nog 3400 —4500 —1100

- Tp,—Tg  300—100 200
n, = n;, — 5.5¢t;

T,=200 T,=200

Nin=4000 Nin=4000

b) Controller lines of open-loop control system are horizontal because Ky = 0,
N, AN, Nog — Noc 5000 — 3000

oN,, ~ AN, " Niyp — Njpe 5000 — 3000

T,=200 T,=200

12

T .
o
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2. Integral Control Systems:
Integral control system has an integrating component yields (1/D) term
therefore their controller lines of steady-state operating curves have an §
infinite slope (vertically). Proportional controller could be inverted to an §
integral controller by eliminating the walking beam linkage and using |
hydraulic integrator as shown in Figure. '

arahidi University trol Engineering

Aeronautical Technical Engineering 2019-2020
N, _ AN, _ Nog—N,g 5800 —2700 3100 _ .
OT In, oo AT INpioos Tr—Tec ~ 100—300  —200

n, = n;, — 15.5¢;

College of Technical Engineering

| 3000
Throttle Lever Desired
¢ ) > —2000 Speed
z| FFFI N;
r 1000
Pivot Q = Q(X,P), Linearization,
— | x | @c/m| ¥ q=Cix—Cyp
Xy ; —> —> CoM o
: Valve D Then, q=Cx—=2-D?%
Drain : A
C,M
_ ADy = C;x — —=—D?y
Supply = : . Piston - ‘ 2 4
Pressure : Let t=CM/A
j ; y MGV
Drain S ~—— D(1+ D)
——— ; T|ncrease Flow For negllglble load, =0
Flow Control Valve (C1/4)
Decrease Flow =
Fuel Flow \Q \\4 l, — 4 D~
to Engine -

N\

Nin

C,Ks

RRRSRARAARRAARRARRARARARAARRARAAARARARARAARAARARARARRAARAARAARARARARRARARARARAAARARARARARARARAARAAARAAARARARARARARARARARARARARARARAY

Error Signal

z+

Overall block diagram representation for speed control system is:

y o
G

T n
AR LA N R P
3 5 1+1,D

Ks—C,C, |

Ca

Using the rule of combining blocks in cascade and let K; =

Cs(C1/A)
(Ks—CyC3)




AL Farahidi University Automatic Control Engineering College of Technical Engineering
Aeronautical Technical Engineering 2019-2020

y

Cs

Error Signal

Nin z+ K q+ Ce N
—| ¢,k —1 %1+12Dr

Ca

Mathematical differential equation of operation,
C,K K, Cq CsCeD

K.CoCa + D1+ 1,0) " " KiCoCy + D1+ 1,D) -
Steady-state block diagram representation could be obtained by letting = 0 ,

Error Signal Cg

Nin 7+ q+ C
ﬁ CZKS S 6
Cy ‘

Also, steady-state equation,

C, K,

Ng = ——
C
4

Nin

From the integral element K;/D , the steady-state operation constant is:

Speed (output variable) is independent of change in
load torque (external disturbance variable) for an
integral control system as shown in Figure. It is an Controlled Variable ~
easy matter to adjust the scale factor C, for the

K . K
K., = (—1) = o0, since, = (—1) e
61 D/p=o0 d D/p=0
q = Kgie or, q=>xe e=20
So, no steady state error in integral control system, A
T
Th % Nin 3 T2
CoKsnip —Cynp =e =0 8 T
= 1
C, K, S
Ne = —FMNin g5
Cs g
E
Q
g
T
=

input speed dial so that the coefficient of the desired input is unity % =1,
No = Nip
3. Proportional Plus Integral Control Systems:
14

T .

Since K;; = o and Ky = C, , then slope of controller lines is infinite (vertical
lines) and this speed control system is considered as an integral control system.

e e e e e e e e e s
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! A proportional plus integral controller as shown in Figure combines desirable §
transient characteristics of a proportional controller and the feature of no §
steady-state error of the integral controller.

Desired
Speed 000
Throttle Lever N,
@ ® > 2000
z | 77
r 1000

To flow control valve

-

-

-

-

-

-

-

-

%

:

:

: |
%  Proportional action is provided by unit 1,
% Block Diagram Representation of Hydraulic Servomotors,
:

:

:

:

:

:

:

:

:

:

X I J 1 e | (/4 Y1
k<2 2 D |

Using the rule of combining blocks in cascade yields,
X 4 (C1/24) Y1
'Y D
| Y1
2

Using the rule of eliminating feedback loop yields and let, C—A = T4,

A

X 1 Y1
—

e

1+t,D

Then proportional equation is,
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Using the rule of combining blocks in cascade,

Error Signal

Nin + 1 Cs (C,/4) 1
— CoKs 2K5—Cr63< D t1t4D
C, |

The steady -state constants could be evaluated as,
16

; arahidi University trol Engineering College of Technical Engineering
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=140
; 0:0 | | i 1 C./A V2
Integral action is provided by unit 2, x| @/l 22
B (Cl/A)x ity D
Y2 D y —
: 1 1 n (C1/4)
Y=2\i+uDp " D
This equation could be represented by a block diagram,
1 /| v
: D +
X 1
% 1+ T1D Vi
&
3 Using the rule of combining blocks in parallel,
&
g X C,/A 1
3 ¢,/ )+ 11y,
% D 1+ T1D
«
3 Using the rule of combining blocks in cascade,
«
bed b
4 1/(C,/4) 1 y
< > = EEEAREN
% 2 ( D 1+ r1D>
Overall block diagram for the proportional plus integral control system,
% Error Signal Cs
Nin + 1L x| 1/G/4) 1 Y e Lt Ce  |Mo
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= n = |- = OO
61 IVEAD=0 " o K—C,.C;\ D 1+7DJ|, _,

K¢z = [G2(D)]p=0 = [ = (e

1 + TZD]DZO

Ky = [H(D)]p=o = C4
And steady-state block diagram representation could be obtained by letting = 0

L

i

Cg
Nin * q + ny
—| C,K; —>| Cs
(s &
Steady-state equation,
S AK;1 K . BKg, t,
° 1+ Kg KgoKy J 1+ Kg1K2Kn
ool
(0] C4_ mn mn

This equation refers that the steady-state operation of proportional plus
integral control system is the same as of an integral control system alone in
which it follows that e is zero during steady-state operation,
CoKsnip — C4n, =€ =0
Also,
CZKS

Ny = ——
Ca

T .

%

%

%

%

|

Ny, = n; %
in = Nin %
|

|

|

|

|

%

%

%

%
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Chapter Five
Laplace Transforms
In the method of Laplace transformation, differential equations are
transformed into algebraic equations with variable s while time solution or

transient response is obtained by Laplace Inverse. Laplace transformation
F(s) of a function of time f(t) is,

Hint:

F(S) = L[f(t)] = ] f(t)e_“dt feax dx = leax
0 a

1. Step function:
Step function shown in Figure, is hu(t) where h is
height while u(t) is a unit step function whose height 164
is one. Laplace transform of step function, b hu(t)

F(s) = L][hu(t)] = foohu(t)e‘“dt = — g
0

Ll

oo

—st

S
0

2. Pulse function:
Pulse function as shown in Figure.

fFOA
h 0<t<t,
f(t) = {0 L)y . .
Laplace transform of pulse function is, %
(0] tO o t
F(s) = L[f(®)] =f f(e stdt = | he stdt+ | (0)estdt ) At >
0 0 to o
t —st\ [Lo
? N h
F(s) = j he™stdt = h( X ) = — (1 — e~Sto)
0 S 0 S

3. Impulse function:

approaches fo zero. It is designated by ku,(t) whose area is k = ht, .

Where, u;(t) is unit impulse function whose area is unity. Since Laplace
transform of pulse function is,

h
F(s) = E(l — e~ Sto)

Laplace transform of impulse function where h = ti Hint:d »
k —e% =% —
F(s) = lim [_(1 - e—sto)] dx dx

to—0 tOS

Which is impossible but it could be obtained using L'hopital rule,
k (d/dt,)[k(1 — e Ste)] kse St
— 1 _ =St — i e =
Fls) = lim, [t (1-e )] W T (d/dt,)(tes) s F

g
Vg
g
Vg
g
Vg
g
Vg
g
Vg
g
Vg
g
g
2
///// =
2
Vg
2
Vg
2
Vg
"
"
&\
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4. Exponentially decaying function:
Exponentially decaying function f(t) =e~% is shown o-at

/4

in Figure. Laplace transform of exponentially
decaying function is, 0

0 0 o~ (sta)t|® 1
F(s)=L(e ) = f e e Stdt = f e~ = —— | =

0 0 sta|, sta

5. Exponentially Increasing function:
Exponentially increasing function f(t) =e% is shown f(©)
in Figure, Laplace transform of exponentially decaying Jat
function is,
fos] e—(s—a)t *® 1 0
F(s) = L(e®) = f eeStdt = — =
0 s—al|, s—a
6. Sinusoidal Function:
A sinusoidal function shown in Figure is Foa
expressed as, f(t) = sinwt L sin wy\
Hint: 0
fe smbxdx=a2+b2e (asin bx — b cos bx) _1____x./ \/
Laplace transform of sinusoidal function,
F(s) = L[sin wt] = inwt e”Stdt = ——
(s) [sin wt] jo sin wt e 71 o

Table 5-1 Laplace transforms of most functions arise in control problems.

/4
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z

/4
Z
/4
Z
/4

N

/4
/g4
/4
/g4
/4

Type of Function f(t) | F(s) | Type of Function f(@® F(s)
: h iall 1
Step Function hu(t) | - . equnenha v e’
s | increasing function s—a
i i 1 nepat n—'
Unit Step Function | u(t) 5 te (s — )+t
: Sinusoidal : w
Impulse Function | ku,(t) | k Function sin(wt) 1wl
: : Sinusoidal s
Unit Impulse Function | u;(t) 1 Function cos(wt) 2107
_ , 1 Sinusoidal at s w
unit ramp Function | ¢ = Function esin(wt) | T 7 ¥ o2
n! Sinusoidal s—-a
. . n at N
Exponential Function | ¢t e Function e cos(wt) G-+ o’
exponentially ot 1
decaying function s+a

/4
Z
/4

S sgssssss
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Laplace Transform Properties:
1. LIkf(®)] = kF(s)

LIf1(®) + f2(0)] = Fi(s) + F»(s)
3. LIDf ()] = sF(s) — f(0)

LID*f(t)] = sL[Df(t)] — Df(0)

= s[sF(s) = f(0)] = Df(0) = s*F(s) — sf(0) — f'(0)
B. LID3*f ()] = sL[D*f(t)] — D*£(0) = s[s?F(s) — sf(0) — Df(0)] — D*£(0)
= s3F(s) — s*£(0) — sf'(0) — f"(0)

6. LIE"f()] = (~D" S F(s)
7. Lif @] = 2F (3)

8. L[ f(®)de) = 9%+ 1p(s)

Laplace Transform Theorems:

1. Initial-Value Theorem:
Initial-value theorem is used to determine the value f(t) at zero time from
Laplace transform F(s);

£(0) = lim f(2) = lim sF(s)

2. Final-Value Theorem:
Final-value theorem is used to determine the value f(t) at infinity co from
Laplace transform F(s);

f(e) = lim f(8) = lim sF (s)

Transient Response:

Transient response means that a (A |
control system changes from some initial Transient Response
operating condition to final condition as
shown in Figure. Transient responses or
the time solution could be determined by
solving the general  mathematical y(0)

differential equation,
a,D™+a,,_D™ 1 +a, ,D"2+--+a,D+a,

v

y(©) = D™+ b,_1D" 1+ b, _,D""% + .-+ b D + by f®
Ay, Ay, .., Ay, bo, by, ..., b, are constants and,
y(t) Transient response function or output function
f(@) Forcing function or excitation function (input function)

Left,
L,(D) = au,D™+ a1 D™ 1+ ay,_,D™ 2+ -+ a;D +a,

/4
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
» ow
Z
/4
Z
/4
Z
/4
Z
/4
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% L,(D) =D"+b,_D* 1+ b, ,D" %+ -+ b D+ b,
L,(D) Characteristic function

2 L,(D)=0 Characteristic equation
« Exponent n is the highest power of D in the characteristic function,
Ly (D) Ly, (D)
t) = t W here, is the transfer function
y(¢) L.(D) f@®) L (D) fer f

Different methods are used to solve this equation and obtain time solution.
Solution with Laplace Transform Method:
General mathematical dif ferential equation of operation,

L (D)
y(®) = 5y f©

Laplace Transform,
Ly (S)F(s) +1(s)
L, (s)

Y(s) =

. N
Since, F(s) =—2
DE(s)

Lm(S)NF(s) + I(S)DF(S) _ A(S)
Ly (s)Dps) ~ B(s)
Where, A(s) and B(s) are polynomials ins. B(s) may be factored as,
B(s)=(s—r)(s—1) (s =)
Y(s) = A(s)
(s—=r)(s—13) (s —1)
Transient response y(t) is obtained by solving the general transformed
equation Y(s) where zeros of polynomial B(s) may be distinct or repeated,
1. Distinct Zeros:

Y(s) =

rl;trzirgi"'irn
Techniques of Partial Fraction Expansion,
K K, K,
Y(s) = + + -+
S—1y S—T1 S—1y
Laplace inverse gives the transient response of a control system,
y(t) = Kje"tt + Kye™2t - - + Kje™!
Where constants K; for distinct zeros may be evaluated as,

K, = lim [<s ~ 12— i[5 — )Y )]

B(s) SoT;
2. Repeated Zeros:

When transformed function B(s) has a repeated zero r occurs q times:
B(s) = (s —1)(s = 1)(s = 1)+ (5 = Tug)
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/4

Techniques of Partial Fraction Expansion,
C Coy C, K, K,_
Y = a + q + -4 + + o 4 L’
() (s—7m)1 (s—nr)11 S—1r s—n S = Tyq

Laplace inverse yields the transient response of the control system:

[ C t171 (C _.t172 C,t

q q—1
t) = + +t—+C
y( ) _(q—l)! (61—2)! 1! !

Where constants for repeated zeros may be evaluated as:

C, = lim| (s — ) ;‘g g = lim[(s ~ ¥ ()]

et + Kie"t + -+ K, _ge™mat

A(s) 1d
Cq-1 = llm {1' IS [(s —r)4 B(z) } = 11m {?d_ [(s — r)qY(s)]}

k k
o tafl o) e v
Example 1:

Determine the transient response or the time solution of the following
differential equation when all initial conditions are zero,

_ D+4
y(®) = D2+5D+6f()

The forcing function is an exponentially decaying f(t) =2e~t. Also using
Initial and Final value Theorems to determine value of transient response at
zero time y(0) and value of steady-state response y(oo)

Solution:

(D? +5D + 6)y(t) = (D + 4)f(t)

D?y(t) + 5Dy(t) + 6y(t) = Df (t) + 4f ()
Laplace transforms,
[s2Y(s) = sy(0) = y'(0)] + 5[sY(s) — y(0)] + 6Y(s) = [sF(s) — f(0)] + 4F(s)
Since all the initial conditions are zero:
s2Y(s) + 5sY(s) + 6Y(s) = sF(s) + 4F(s)
(s2+ 55 + 6)Y(s) = (s + 4)F(s) Y(s) = %F(s)
s2+55+6=(s+2)(s+3)=0 Characteristic equation

s+4
YO =Giae+n'®

f@) =2e"" F(s) = LIf ()] = L[2e7"] = 2L[e™"] =
Laplace transformed equation,
Y(s) =

2
s+1

2(s+4)

(s+1)(s+2)(3+3) j
S g gy

/4
/4
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/4
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Techniques of Partial-Fraction-Expansion,

/4

V()= sli11 * slfrzz sli33 Ki = lim[(s = )Y (s)]
K = fim, :(S TUGH 1)2(25: 24))(5 n 3): =3
K = Jim, :(S R 1)2((;: 24))(5 n 3): =
Ky = Jim, :(5 o 1)25: 24))(5 n 3): =1
3 4 1

Y(s) =

— +

s+1 s+2 s+3

Inverse Laplace gives ftransient response or time solution,
y(t) =3et —4e %t + 73

Using Initial -Value Theorem,

B 2(s +4) B
y(0) = 11m y(t) = hm sY(s) = Sh_)rglos GIDGIDGT3) "

Using Final -Value Theorem,
2(s+4)

y(e0) = lim y(©) = limsY () = lIms ey T 5+ 3) -

Verification,

y(t) = 3et —4e7 2t 4 73
Value of transient response at zero time,
y(0) =367 — 47200 4 =300 = ¢
Value of steady-state response as time approaches infinity,
Y P PP 4
y(00) = 3e7(®) — 472(®) 4 ¢=3(=) =

Example 2:

Determine the fransient response or the time solution of the system
described by the following differential equation,

6(D + 2)
YO =5 pr 2/ ®
Forcing function f(t) is a unit step function, and all initial conditions are zero.
Also using Initial and Final value Theorems to determine value of transient

response at zero time y(0) and value of steady-state response y(co)
Solution:

(D2 + 7D + 12)y(t) = 6(D + 2)f(¢t)

D2y(t) + 7Dy (t) + 12y(t) = 6Df(t) + 12f(t)
Laplace transforms,

/4
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
/4
Z
»” o
Z
/4
Z
/4
Z
/4
Z
/4
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% [s2Y(s) = sy(0) — y'(0)] + 7[sY (s) — y(0)] + 12Y(s) = 6[sF(s) — f(0)] + 12F(s)
Since all the initial conditions are zero:

s2Y(s) + 7sY(s) + 12Y(s) = 6sF(s) + 12F(s)
(s2+7s+12)Y(s) = 6(s + 2)F(s)
6(s+2)

College of Technical ineering

/4

m
oQ

n

YO =772’ ®
s24+75s+12=(s+3)(s+4)=0 Characteristic equation
6(s+2
v(s) = —28FD g

(s+3)(s+4)
Since f(t) is a unit step function, F(s) = 1/s, Laplace transformed equation,
6(s + 2)
V) = s(s+3)(s+4)
Techniques of Partial-Fraction-Expansion,

V() = L 2y 1 K, = lim[(s — )Y (5)]
VT S Ts+¥3  5+4 T RIS TS
6(s + 2)
K =tim [ +0 Y
1= 1% (s+ )S(S+3)(S+4)
6(s + 2)
2 = Jlim, [(5 MR Teunwy
6(s + 2)
Ks = i [ 4 = -3
3= A0, SN )s(s +3)(s +4)
Y(s) = 1 4 2 3
5= s s+3 s+4
Inverse Laplace gives ftransient response or time solution,
y(t) =1+ 2e73t —3e~4
Using Initial -Value Theorem,
6(s+2
y(0) = ltirr(} y(t) = lim sY(s) = lim s ( )
- S—00

soow” s(s2+ 75 +12)
Using Final -Value Theorem,

. . . 6(s + 2)
y(o0) = thm y(t) = llrré sY(s) =lims 1
—00 S—

s>0 s(s?2+7s+12) -

Verification,

y(t) =1+ 2e73t — 34
Value of transient response at zero time,
y(0) =1+ 27300 — 3740 = ¢
Value of steady-state response as time approaches infinity,
y(o0) = 1+ 2e73(®) — 3p=4(®) = 1
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% Example 3:
Determine the fime solution of the following differential equation when all
initial conditions are zero and forcing function is a ramp function as f(t) = 4t,
t) = t
y(®) D2+3D+2f()

Also using Initial and Final value Theorems to determine value of transient

response at zero time y(0) and value of steady-state response y()
Solution:

Since all the initial conditions are zero,

V) =z 2t O =Ginera’®
4
f(t) =4t F(s) = LIf ()] = L[4t] = 4L][t] = 5z
Laplace transformed equation,
4
Y(s) = s2(s+ 1D(s+2)
Using the techniques of Partial Fraction Expansion:
Y(s) = Cq Cq_l 4o g Gy + K +...+h
S (s—=1r)4  (s—r)a1 S—r s—n S —Th—gq
vy =2yl fa | B

s2 s s+1 T s+ 2
Cq = lim[(s — )Y (s)]
S—r

4
C; = lim |s® 2(s+1)(s+2)] =2

1
Cgor =lim {Fd_ (s = DY (]

€1 = ?L% {c(lis [52 s?(s + 14)(5 + 2)]} - ?L% {% [(s +1)(s + 2)]}

¢, = lim {d[ 4 ]}_1_ —4(2s + 3) 3
_sl—>0 dsls? +3s+2 _s—>0 (s24+3s+2)?

K, = Sl_i)rpl [(s +1)

4 J—
s2(s+ 1)(s + 2)] B

K, = Sl_i)rpz [(S +2) s?2(s+ 1)(s + 2)] =1

Y()—Z 3+ 4 1
S s2 s s+1 s+2

Inverse Laplace gives transient response or time solution,
y(t) =2t —3+4et—e %
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/4

An alternative technique to evaluate C; in order to avoid differentiation,
v(s) = 4 _2,G, 4 1
S Cs2(s+D(s+2) s s s+1 s+2
This equation is valid for any value of s. For s =1,
L S ¢, =-3
(D(2)3) 1 1 2 3 1T

Using Initial -Value Theorem,

Y(1) =

YO =gy =l V) = IS G DG +2)
Using Final -Value Theorem,

. . . 4 —
y(00) = tlggy(t) = £1_T)%SY(S) = !51_{%552(5 +1D(s+2) 0

Verification,

y(t) =2t —3+4e t —e %
Value of transient response at zero time,
y(0) = 2(0) — 3 + 4@ — ¢72(0) =
Value of steady-state response as time approaches infinity,
y(0) = 2(0) — 3 4 4e~(®) — ¢72(®) = o

Example 4:

Determine the time solution of the following differential equation when
all initial conditions are zero and forcing function is a ramp function as

f() = 4t,

10(D + 2)
YO = prropra0/ ©
Also using Initial and Final value Theorems to determine value of transient

response at zero time y(0) and value of steady-state response y()
Solution:

Since all the initial conditions are zero:

10(s + 2)
V) =Zrosr20" @
s24+95+20=(s+4)(s+5)=0 Characteristic equation
10(s + 2
Y(s) = 28 F2) gy

(s+4)(s+5)
Since, f(t) =4t, F(s)=L[f(t)] = L[4t] = 4L[¢] = i
Laplace transformed equation,

/4

40(s + 2)
s?2(s+4)(s+5)

Y(s) =

/4
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% Techniques of Partial-Fraction-Expansion,
ves) = C+C+ Ki K
5= s s+4 s+5
o i [ 206 +2) ]_4
2= 0 s2(s+4)(s+5)1
df, 40(s+2) o (d 1 40(s+2) 1
Cl—llm{ [ ]}:110{_ ]}_
S—

/4

soolds[” s2(s + 4)(s + 5) ldsls+G+5) 5
o 40(+2) 1
Ky = sllrgt [(s T4 s?2(s+4)(s+ 5)] =-°
40(s + 2) 24

K, = li 5 S
2 = Jim, [(” )G+ D619 -5
4 1/5 5  24/5
Y(S)_s_2+ s st4 5+5
Inverse Laplace gives transient response or time solution,

1 24
y(t) =4t +=—5e * +—et
5 5
An alternative technique to evaluate C; in order to avoid differentiation,
40(s + 2) 4 ¢, 5 24/5
Y(s) = =S t—a——t
s?(s+4)(s+5) s2 s s+4 s+5
This equation is valid for any value of s. For s =1,
Y(1) = 120 4 N Cy + 24/5 c
MGE)6E) 11 5 6 1

Ul =

Using Initial -Value Theorem,

40(s + 2) B
y(0) = llm y(t) = hm sY(s) = 11_)r£105 TG
Using Final -Value Theorem,

y(o0) = 11m y(t) = hm sY(s) = lims— W06 +2) =
s50 S%(s+4)(s+5)
Verification,
y(t) = 4t +%— Se~*t +2?4e 5t
Value of transient response at zero time,

1 24
y(0) = 4(0) + ¢ - 5e~+(0) 4 ?e—5(0> =0

Value of steady-state response as time approaches infinity,

1 24
y() = 4(e0) + = - Se—4(®) 4 ?e—swo) — o

10
N ij
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Example 5: Determine the time solution of the following dlffer'en‘rlal
equation when all initial conditions are zero and f(t) = e™%:

/4

m
oa,

ine

o

ring

1
YO =0 rrmr 2! ©
Also using Initial and Final value Theorems to determine value of transient
®» response at zero time y(0) and value of steady-state response y(oo)
& Solution: Since all initial conditions are zero, Laplace Transform yields,

Z

1
Y = F
O = Grpisrn ©
1
— et = = -t =
fi®)=e F(s) = LIf(®O)] = L[e™"] N7,
Laplace transformed equation,
1
Ve = e 3G+ 2
Techniques of Partial-Fraction-Expansion,
C3 C; C1 K,
Y(s) =
(s) (s+1)3 (s+1)2+s+1+s+2
= |hi 3 —
€ = lim, [(s 1 (s+ 1)3(s + 2)] 1
= ) {d[< el =i el =
2= A0 s 1Y G+ 136+ 2l ~ ol + 2)2
¢, = lim {— [(+)3 . = li {1[ : ]}—1
1= 2 21ds2 G+Dis+l] ~ =zl + 23~
_ 1
Ky = sllr{lz [(s +2) (s+1)3(s+ 2)] =1
Y(s) = 1 1 4 1 1
R TG+ D3 (s+12 s+1 s+2
Inverse Laplace gives transient response or time solution,
1 1
y(t) = Etze‘t —tet+et—e % = [1 —t+ Etz] e t—e2t
An alternative technique to evaluate C; and C, to avoid differentiation,
v(s) = 1 1 C; G 1
S _(s+1)3(s+2)_(s+1)3 (s+1)2 s+1 s+2
Y(0) = LI S T N
T @ r oz oTT
__t 1.6 C1 1 ~
Y(1) = PHOOEOE 3 Or 2G+G=1
Solve equations simultaneously, C; =1, and C,=-1

11
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Using Initial -Value Theorem to determine the value of transient response at
zero time,

. . . 1 _
y(0) =limy(&) = lim s¥(s) = lim s ~=—55 55y = O

Using Final -Value Theorem to defermine the value of the steady-state
response,

. . . 1 _
y(eo) = limy(t) =limsY(s) = lims s 72 =

(0]

Verification,

y(t) = [1 —t+ %tz] et —e72t
Value of fransient response at zero time,
(0) = [1 ~(0) + % (0)2] e=(0) _ ¢=20 —
Value of steady-state response as time approaches infinity,
y(©@) = [1- (@) + 5 (@2] e - 2 =0

Example 6:

In block-diagram representation for a proportional control system shown in
Figure,A=1, K; =1, K, =2, K =05, B=-51, = %,and 7, = 1. Determine
the transient response and its values at zero time c(0) and at steady-state

response c() by using Initial and Final value Theorems when all initial
conditions are zero for each of the following cases,

a) v is a step function of constant value v, and u = 0.
b) u is a step function of constant value u, and v = 0.

Lu(®)

B

v(t) r(t) & K, m + K, c(t)
o 4 ,
_ 1+ T1D 1+ T2D ‘
Ky

General differential equation of operation for a control system with two
inputs and one output is:

N-.N:,D Nq>,DyD
c(t) = 612Dy (6 + 620 Dg1 ac)
Ng1NgaNy + D1 Do Dy Ng1Nga2Ny + D1 Do Dy

Solution:

Then,
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) AK, K, BK,(1 + 1,D)
% c(t) = KKKy + (1 +17,D)(1+1,D) v+ KKKy + (1 +t,D)(1 4+ 17,D) u(t)
» Substitute numerical values,
5 10(1+-D)
c(t) = T v(t) — n u(t)
1+(1+ED)(1+D) 1+(1+ED)(1+D)
~ 10(6 + D)
‘O=prypr1z" vy 124
~ 12 10(6 + 5)
‘O=D2730:9"Y " D+ra0+9"®

Since all initial conditions are zero, Laplace transforms could be obtained by
replacing D by s:
Ces) 12 Vs 10(6 + s)
V= YT 3G+ 4

G+3)G+a) Us)
a) Since v is a step function of constant value v,.and u = 0, then V(s) = v/s
and U(s) =0
12
) = 6D’
Techniques of Partial-Fraction- Expansion

K

K, 3

C - | —

(s) = [ s+3+s+4v

K; = lim[(s = 1)C(5)]

Ky = ?i%[(s_o)s(s+3)(s+4)] =1

12
s(s+3)(s+4)

K, = Sl_i)r£13 [(s + 3)

Ks = 511@4 [(S W, s(s+3)(s + 4)] =3
4 3

1
o) =|c-—5+
(s) s s+3 s+4 v
Inverse Laplace gives transient response or time solution,

c(t) = (1 —4e 3 +3e )
Using Initial -Value Theorem,

12
—1 = 1 =i =
c(0) im c(t) = im sC(s) = lim s GG LD v=20
Using Final -Value Theorem,
_ _ 12
c(e) = th—>r?o c(t) = ?—% sC(s) = E—r}(}ss(s +3)(s+ 4) -V

13
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Verification,

c(t) =(1—4e 3t +3e )
Value of fransient response at zero time,
c(0) = (1 —4e73® 4+ 3e*@)y = 0
Value of steady-state response as time approaches infinity,
c(o0) = (1 — 473 4 374y =y

b) Since u is a step function of constant value u, and v =0, then U(s) = u/s

and V(s) =0
B 10(6 + s)
(O =G rac+n"
Techniques of Partial-Fraction- Expansion
K K K
C(s) = [ s+3 st 4l

Ki = lim[(s = m)C(5))

—10(6 + s) __c
s(s +3)(s + 4)] T

K1=!Si_r)r& (s—0)

K, = lim [(s + 3) —1006+9) |_ g
2 S| TS+ )G+
—10(6+s) |
K, = li 4 = -5
37 A0, _(S T )s(s +3)(s +4)]
C()—[ 5+ 10
Yy~ s s+3 s+4u

Inverse Laplace gives transient response or time solution,
c(t) = (=5+ 10e73t —5e 4y
Using Initial -Value Theorem,
c(0) = llm c(t) = hm sC(s) = lims

S—00

[ 10(6 + s) 0

s5+3)+4)
Using Final -Value Theorem,

c(o) = 11m c(t) = 11m sC(s) = llIT(l)S

10(6 + s) _ ¢
[ s(s+3)(s+4)u]__ u

Verification,

c(t) = (=5 + 10e73t —5e*)u
Value of transient response at zero time,
c(0) = (=5 + 10e73® —5e=40)y =0
Value of steady-state response as time approaches infinity,
c(00) = (=5 + 10e73(®) — 5=4(*))y = —5y
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% Example 7:

Block-diagram representation for an integral speed control system shown in

& Figure. The output speed is n,, the desired input speed is n;,, and the load
Vi

torque is u. For 7 = 0.25, K; =1, K, =0.75, and all initial conditions are zero,

®» deftermine the transient response of the control system for each of the
following cases:

a) n;, is a step function of constant value n;,, and u = 0.
b) u is a step function of constant value u, and n;, = 0.

_ju@®

Nin(t) T Ky + K, n,(t)
'? " D 1+m [
Solution:

General differential equation of operation for a control system with two
inputs and one output is:

NgiNg,D N, Dy D
C(t)= G1'YG2~H T'(t)+ G2YHYG1 d(t)
Ng1NgaNy + D1 D2 Dy NgiNgoNy + Dg1 D2 Dy

Then,

() = 110 ® fa7 ®

o K K, + D+ D) Y T KK, + DL+ tD)
Substitute numerical values yields:;
. 0.75 N 0.75D o

"o\ =075 + D(1 + 0.25D) ™ T 0.75 + D(1 + 0.25D)
no(® =5z rap v 37 ® ~prrap 340

3 3D

no(t) = (D + 1)(D + 3) nin(£) = D+ 1)(D + 3)”@

Since all initial conditions are zero, Laplace transforms could be obtained by
replacing D by s:
3 3s
N =D+ V) " Grner U@
a) Since n;, is a step function of constant value n;,, and u = 0, then
Nin(s) =ny,/s and U(s) =0
3

No(s) = s(s+1(s+3) Min
Techniques of Partial-Fraction-Expansion:

e o [y Ko, K
A P s
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K; = lim[(s = 7N, (5)]

3
K = | -1
1= 35 Ss(s+1)(s+3)

_ 3
s(s+1)(s+ 3)] T2

1
s(s+1D(s+ 3)] 2
1 3/2 1)2
N,(s) = |=— :
o () [S s+1 st3)Mm
Inverse Laplace gives transient response or time solution,

3 1
ny(t) = (1 - Ee_t + Ee_st) Nin

Using Initial -Value Theorem,
no(o) - P_I)%no(t) - Sh_)rg)SNO(S) - 5}1—{2)55(5 + 1)(5’ + 3) Nin = 0

Using Final -Value Theorem,

" 3 1 3
1o() = lim 1, (t) = lim sNy(s) = lim s s+ D(s+3) "

= MNjn

Verification,
3 -t 1 -3t
n,(t) = (1 —5e +Ee )nin
Value of transient response at zero time,
3 1
n,(0) = (1 — Ee_(O) + 58_3(0))111-” =0

Value of steady-state response as time approaches infinity,

3 1

no(oo) = (1 - Ee_(oo) + 53_3(00)>nin = Njn

b) Since u is a step function of constant value u, and n;, = 0, then
U(s) =u/s and N;,(s) =0

No(s) =

-3
(s+1D(s+3) v
Using techniques of Partial-Fraction-Expansion:

K>

N()—[K1 +
Os_s+1 s+3u

_ —3 3
Ky = Jim, [(s 1 (s + (s + 3)] )

3 -3 _3
[“+ %s+n@+3J‘§

lim
s—-3

3/2  3/2 ]u

NO(S)Z[_5+1+S+3 j
16
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Inverse Laplace gives transient response or time solution,

3 3
n,(t) = (——e‘t +—e‘3t>u

2 2
Using Initial -Value Theorem,
. . . -3 _
n,(0) = ltl_r%no(t) = ;LTOSNO(S) = 3113)105 GEDG T 3)u =0
Using Final -Value Theorem,
. . . -3 _
n, (o) = gl_)rgno(t) = LI_E%SNO(S) = ll_I)T(}S GG+ 3)u =0

Verification,

3 3
n,(t) = (—Ee‘t + 53‘3’:) u
Value of transient response at zero time,

3 3
n,(0) = <_Ee_(0) + 59‘3(0))11 =0
Value of steady-state response as time approaches infinity,

3 3
ny (o) = <—§e_(°°) +§e_3(°°))u =0

Example 8:

The system shown in Figure is initially at equilibrium, with r =1 and

d = 0. A step-function disturbance d(t) = u(t) is then initiated at time t = 0.
Determine the response c(t) for t > 0.

R

L|d(@®)
Solution:

rt) % 3 + c(t)
4’?—' D . D+4 T’
Q1l:

For the system shown in Figure, determine the response c(t) when,
a) r(t) =u(t), d(t)=0and c(0) = ¢'(0) =0
b) r(t) =0, d(t) =u(t) and c(0) =1 and ¢'(0) = -1

General differential equation of operation for a control system with two
inputs and one output,

N-.N-,D N-,DyD
c(t) = ¢1Ng2 Dy (6 + 62D0uDg1 ac)
Ng1Ng2Ny + D1 Do Dy Ng1Nga2Ny + D1 Do Dy
3(2) 2(2D)
c(t) =

(3)(2) +2D(D +4)r(t) HENOEYII0 +4)d(t)
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3 2D
t) = t) + d(t
% c(®) D2+4D+3r() D? +4D + 3 ©
3r(t) + 2Dd(t)
c(t) =
D2 + 4D + 3

D?c(t) + 4Dc(t) + 3c(t) = 3r(t) + 2Dd(t)
Since the system is initially at equilibrium means that at t =0, D =0,
(0)%2¢(0) + 4(0)c(0) + 3¢(0) = 37r(0) + 2(0)d(t)

3c¢(0) = 3r(0), c(0)=r(0) =1 c'(0)=0 d(0)=0
Laplace transforms,
[s2C(s) — sc(0) — c'(0)] + 4[sC(s) — c(0)] +3C(s) = 3R(s) + 2[sD(s) — d(0)]
s2C(s) — s+ 4sC(s) — 4 + 3C(s) = 3R(s) + 2sD(s)
(s? 4+ 4s +3)C(s) = 3R(s) +2sD(s) +s + 4
Since r(t) =1, then  R(s) =L[1] =+
Also  d(t) = u(t) is astep function disturbance, D(s) = L[u(t)] = 5

3
(52+4s+3)C(s)=;+2+s+6
s2+8s+3 s24+8s+3

C = =
() s(s24+4s+4+3) s(s+1)(s+3)
Techniques of Partial-Fraction-Expansion,
C()_K1+ Ko, Ks
S_s s+1 s+3
K =1 s?+8s+3 e
1= 10 SS(S+1)(S+3) \
P '( ) s?+8s+3 '_2
2 S SN T ST DG+ 3]
K = 1 '( £3) s*+8s+3 | 5
37 20 i S s(s+1)(s+3)] B
Cesy = Lo 2 2
S s s+1 s+3

Inverse Laplace gives fransient response or time  solution,
c(t) =1+2et—2e73t
Using Initial -Value Theorem,

_ ) = lim sC(s) = | s> +8s+3 _ 1
C(oo)_tggoc()_sl—%s (S)_sl—rgss(sz+4s+3)_

18
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% Verification,

c(t) =1+2et —2e 3t
Value of fransient response at zero time,
c(0) =1+2e7(® — 2730 =1
Value of steady-state response as time approaches infinity,
c(0) =1+ 2e (@) —273(®) =1

Performance of Control System:

Steady state error is used to measure the accuracy of a control system.
It is the difference between the reference input and actual output as time

approaches infinity. Consider the simple (SISO) control system shown in
Figure,

e(t) = () — H(D)e(®) A0k~ CON i
e(t) =r(t) —G(D)H(D)e(t) >
r(t)

¢® =TGR H(D)
For all initial conditions are zero, Laplace transformed equation as shown in
Figure,

E(s) = — =) M o G
1+ G(s)H(s) -

Using Final-Value Theorem, -

ess = e(o0) = gl_)rg e(t) = !Si_r)%SE(s) ()

_ 1 R(s)
s = 01+ G(s)H(s)
1. Unit step input [r(t) = u(t), R(s) =1/s]

ess = lims R(s) = lims 1/s = .
s50 1+ G(s)H(s) s-0 1+G(s)H(s) 1+ li_r)tgG(s)H(s)
1
s T T K,
K, = £l_I)I(}G (s)H(s) Positional error constant
2. Unit ramp input [r(t) =t, R(s) = 1/s?]
1/s? 1 1 1
e = lims = lim = — =—
50 14+ G(s)H(s) s-0ls+sG(s)H(s) £1_r)1(}sG(s)H(s) K,
_ 1
€ss = K_v
K, = H%SG (s)H(s) Velocity error constant

1. Unit parabolic input [r(t) = t2/2,  R(s) = 1/s°]
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_ 1/s8 _ 1 1 1
% es = S T T G HG) s ls?+ szc(s)H(s)] ~ lims2G(s)H(s) K,
B 1 s—0
€ss = K_a
K, = £§%526 ()H(s) Acceleration error constant
Where, K,, K,, and K,, are called error coefficients
Example 9:
For control system shown in Figure, 1) f~ €(®) 2 ity
determine the response to a unit step — DD +3)

function, a unit ramp function, and a unit

parabolic function when all initial conditions

are zero. What is the steady-state error to each of these inputs?
Solution:

Since all initial conditions are zero, Laplace block diagram representation as

shown in Figure, ; R(s) 4. E(s) 2 C(s)
C(s) _s(s+3) 2 — sts+3)
R(s)_1+ 2 5243542

s(s+3)
2
Cls) _52 +35+2R(S) 5
C(s) = (s)

(s+1D(s+2) R
1. Aunit stepinput, r(t) =u(t) and R(s) =1/s

2
Cls) = s(s+1D(s+2)
Partial fraction expansion, K K K
C(s) :?1+S+21+s+32
2
Ky = lim SS(S+1)(5+2)] =1
Ky = lim, [(s GG 2)] -

. 2 _
Ks = slier [(S +2) s(s+1)(s + 2)] =1

1 2 1
C(S)_§_5+1+S+2
Laplace inverse gives response to a unit step input,
c(t)=1—-2et+e2t
Steady state error for a unit step input is determined as:
20
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_ _ 2 1 1
K, =limG(s)H(s) = lim
s—0 S

Also steady-state error ez could be obtained as,
e®)=r®)—ct)=1—-(1—-2et+e2)=2et -2
Steady-state error,
ess = e(o0) = 2e7(®) —72(=) = ¢

2. A unit ramp inpuft, r(t) =t and R(s) = 1/s?
2
C(s) =
(s) s2(s+ 1D(s+2)
Partial fraction expansion,
G G K K,
C(S)_52+ S +S+1+S+2

C = lim[(s = 1)7C(5)]

C, = lim [52 2 ] =1
2750l s2s+ DG +2))
K; = ;L@,[(S —1;)C(s)]

_ 2
Ky = sllrzll [(S 1 s2(s+ 1(s+ 2)] =2

_ 1
K = sl—lglz [(s t2) s2(s+ (s + 2)] \ =
1 ¢ 2 1/2

2
C(s) = =—+—+ —~
(s) s2(s+1D(s+2) s?2 s s+1 s+2

For, s=1
(1) = 2 _1+C1+2 1/2 d C = 3
“TMO@B) 1712 3 and 1773
1 3/2 2 1/2
C(s) =— ——+ -~
(s) s2 s s+1 s+2
Laplace inverse gives response to a unit ramp input,
ct) =t— ’ + 2e7t — le_Zt
2 2
Steady state error for a unit ramp input is determined as:
2 2
K, =limsG(s)H(s) =lim s ————— ==
v SI_I)%S ($)H(s) sl—r>I(l)SS(S+ 3) 3
1 1 3
s =K, T 2/37 2
21
el t el sttt ot s es s

Ws+3) Ess 1+K, 140

S sgssssss
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% Also steady-state error ez could be obtained as,
3 1 3 1
e()=r(t)—clt) =t— (t ~3 +2e7t — Ee‘”) =5 2e t + Ee‘Zt
Steady-state error,
3 —(e0) 1 —2(e°) 3
ess=e(°°)=§—26 +oe =37
3. A unit parabolic input, r(t) =t*/2 and R(s) =1/s3
2
C(s) =
() = s3(s+ 1D(s+2)
Partial fraction expansion,
Ky K,

C; C; (
C(s)=—+24+2
(s) s3+52+s+s+1+s+2

2 = lim[(s = 1)7C(s)]

G = lim |G+ 0 GG T 2)] -1
K; = lim[(s = 7)C(s)]

s3(s+ 1)(5 + 2)]

1
3(s+1)(s+2 ] 4
c, C 2 1/4

C(S)zs3(s+1)(s+2) S_3+S_2+?_s+1+s+2
Fors=1ands =2
Cc(1) = . 1 C, c; 2 1/4 o ; . _1
W=mroe oot 273 oGt C =g
C(Z)_(2)3(3)(4)_(2)3+(2)2+ 2 3+ 4 Or, 2C;+C, =2

Solve equations simultaneously,

7 3
Cl == Z, and C2 == _E
1 3/2 7/4 2 1/4
C(s) =—=— —
(s) s3 52+ S S+1+S+2
Laplace inverse gives response to a unit parabolic input,
(t)—ltz 3t+7 2‘t+1 2t
AU TRt T TS
S’ready state error for a unit parabolic input is determined as:
2 2 2
= llm s2G(s)H(s) = llm s2——— =i =0

0% s(s+3) s201+3/s 1+

22
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1 1
% eSS = K_a = 6 - ©O
Also steady-state error ey could be obtained as,
1 1 3 7 1
= —_— —_ — 2 J— J— 2 —_ [ _t — —Zt
e(t) ;(t) 7c(t) Ztl (zt 4o 2eT h e )
ty==t——+2et—-e"%
e(t) 2 2 + 2e 4e
Steady-state error,
3 7 —(e0) 1 —2(e0)
ess=e(°°)=§(°°)—z+2€ 7€ = oo
Example 10:
A mass-spring damper system is shown in Figure: N <
a. Write  the mathematical differential Z MWAN—
: . 7 |
equation of operation. %’ B — M e
b. Using Laplace transform fo solve the g L o mm—e)
’

equation when x(0)=0, x'(0)=1,f=0,
M=1,B=3, and K = 2.
c. Determine the steady state error when (f = 0)
d. Determine the steady state error for a unit step input, unit ramp input
and unit parabolic input.

Solution:
A grounded chair representation as shown in Figure,
a) Mathematical differential equation, Al

Z=7y+27Z,+ Z4 Z=MD?+BD +K '

f=27Zx

f=(MD?+BD + K)x

x(t) = = f (1) 70 1 x(t)

b) Laplace transforms, N MDZ 1 BD 1K >

MD?x(t) + BDx(t) + Kx(t) = f(t)
M[s2X(s) — sx(0) — x (0)] + B[sX(s) — x(0)] + KX(s) = F(s)
Ms2X(s) — M + BsX(s) + KX(s) = F(s)

_ M+F(s) _ 1+4F(s) 1+ F(s)
X(s) X&) =6+

" MS24+BS+K S2+35+2
Since, f=0, F(s)=L[0] =0,

X(s) =

1

(s+1(s+2)
Partial-Fraction-Expansion Technique:

23
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K K,
% X(s)_s+1+s+2
Ki = lim[(s = 1)X ()]

| 1
Ky = Jim, [(S UGG+ 2)]
1

K = slirzlz [(S +2) (s+1D(s+ 2)] =1
1

X(s) = —~
() s+1 s+2
Laplace inverse yields time solution or transient response,

x(t) =et—e 2t

c) Steady-state error
e = e(o) = L]im e(t) = lirr& SsE(s)
—00 s—
For open loop control system, H(s) =0
() = lim e(6) = li F(s) 0
= o0 = = =
Oss =€ o O T S T 6(HGs)
Also steady-state error ez could be obtained as,
e(t) = f(t)

Steady-state error,

Open loop control system

ess = e() = f(e0) =0

d)
1. Unit step input [f(t) = u(t) = 1]
For open loop control system, H(s) = 0

| 1 1
Kp = Im G(H(s) =0 “sT1+K, 1+0

1

Also steady-state error ez could be obtained as,
e()=f()=u()=1

Open loop control system
Steady-state error,

ess = e(0) = f() =1
2. Unit ramp input [f(t) = t]
For open loop control system, H(s) =0

K, = lir% sG(s)H(s) =0
s

eSS
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Also steady-state error ez could be obtained as,
e =ft)=t Open loop control system
Steady-state error,
€ss = e(oo) = f(oo) =
3. Unit parabolic input [f(t) = t?/2]
For open loop control system, H(s) =0

1
Ka=!5i_r>r(}szG(s)H(s)=0 €ss = = 5= @

Also steady-state error ez could be obtained as,
e(t) = f(t) = -t? Open loop control system

Steady-state error,
ecc = e(0) = f(0) =

Steady-State Error For Two Inputs-One Output Control System:
Consider a control system with two inputs-one output shown in Figure,

u(t)

Y+ e(t) +H c(t)

r“—>g\>—> G, (D) G,(D)

e(t) =r(t) —H(D)c(t)

_ G (D)G,(D)r(t) + Go(D)u(t)
1+ G1(D)G2(D)H (D)
G1(D)G,(D)r(t) + G,(D)u(t)
1+ G1(D)G2(D)H(D)
e(t) = r(t) + G2(H(D) u(t)
1+ G,(D)G,(D)H(D) 1+ 6,(D)G,(D)H(D)
For all zero initial conditions, Laplace transformed block diagram shown in
Figure and the transformed equation is:

U(s)

T
R E $£ C(s)
(s) +_E(s) () 6 (5)

e(t) =r(t) — H(D)
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_ G2(s)H(s)
FO = 1606000 "V 16,0606
Steady state error using Final-Value Theorem,

= lim sE(s)

s—0

- o - G, (s)H(s)
S T G ()G A G) ) S T e S G () H )

Error coefficients could be de‘rermmed as:
For unit step input,

U(s)

K, = limg_,, G, (s)G,(s)H(s) Positional error constant
For unit ramp input,

K, = limg_, sG,(s)G,(s)H(s) Velocity error constant
For unit parabolic inpuft,

K, = limg,5%G,(s)G,(s)H(s) Acceleration error constant
Example 11:

For feedback control system shown in Figure, all the initial conditions are

zeroand K = 1.5
u(t)
J% 2 |c®
D+4

r(t) +

ﬁ

the following:

a. r(t) is aunit step function and u(t) =0

u(t) is aunit step functionand r(t) =0

r(t) is a unit ramp functionr(t) =t and u(t) =0

Both r(t) and u(t) are unit step functions.

. r(t) is aunit step function and u(t) is a unit ramp function u(t) =t
Solution:

®c a0 o

Ng1NgaDyr(t) + NgaDyDg1d(t)

C) =
Ng1NgzNy + Dg1Dgo Dy

1.5)(2)r(t) + (2)Du(t 3r(t) + 2Du(t
C(t)=( )(2)r(t) + (2)Du(t) C(t) = r(t) u(t)

(1.5)(2) + D(D + 4) D% +4D + 3
Since all initial conditions are zero, Laplace transforms, u(s)
C(s) = 3R(s) + 2sU(s) R(s)+ < 14t 5 C(s)

52+34s+3 , " 71 1>
S _

‘) =i e+ O s e '@

26
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% a) r(t) is a unit step functionand u(t) =0, then R(s)=1/sand U(s) =0
3
C6s) = s(s+ 1)(s+3)
Partial Fraction Expansion,
ceoy 2 K K,
(s) _?+S+1+S+3

PO S -

1= 5% Ss(s+ (s +3)]
KZ = sl—i>IPl [(S + 1)

College of Technical ine

m
oQ

n
&

o

ring

3
s(s+1)(s+ 3)] )

K; = lim [(s + 3)

s—>-3

3/2 1/2

_s+1+s+3
Transient response is obtained by Laplace Inverse,

1

s(s+1)(s+ 3)] T2
1

s

3 1
ct)=1—-et+-e 3

Steady state error, . ’
es =IMS TG, (5)102 HG) R ~lms T Gciz(gs))clzggH(s) uls)
Since, R(s) =1/s cllnd U(s)=0 . .
e = S T 6. )G HG) T =11 lim G, ()G, (s)H (s) T1+K,
K, = E_r)r&Gl(s)Gz (s)H(s) = £§%ﬁ = 00
1 1

655=1+Kp=1+oo=0
Another way (for a unity feedback only)
e(t) =r(t) —c(t)

3 1 3 1
e(t)=1- [1 —Ee_t +§e_3t] =_—et —Ee_gt

Steady state error,
ess =e(0)=—0+0=0
b) u(t) is a unit step functionand r(t) =0, then U(s)=1/s

2s 2
=6+’ "6+
Partial Fraction Expansion,
ooy - K,
() = s+1 + s+ 3
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2
i = Jim [(S DT DG+ 3)] B

/4

(s + 1)(s+3)] -
C(s) =

1 1

s+1 s+3
Transient response is obtained by Laplace Inverse,
c(t) =et—e3t

Steady state error,

— i 1 R li G,(s)H(s) U
ess = S T e GG S T S T e e er L

Since, R(s) =0 and U(s) =1/s

i 2 (s)H(s)

o0 1+ G.(s)G,(s)H(s)
2 1

(s+4)
€ss = = —lim £

s-0 1+ G,(s)G, (S)H(S) 14 Li_{%cﬁ (s)G,(s)H(s)

= hmG1 (s)G,(s)H(s) = hmﬁ = 00

1/2 1/2

5T T11K, 1+

Another way (for a unity feedback only)
e(t) =r(t) —c(t)
e(t)=0—[et—e 3] =—et+e3¢
Steady state error,
e =e(0)=—0+0=0

c) r(t) is a unit ramp function r(t) =t and u(t) =0, then R(s) =1/s* and
U(s)=0
3

s?2(s+ 1)(s + 3)

C(s) =

Partial Fraction Expansion,
CZ Cl Kl KZ
C — 44 -2
() = 2 s T s+1 + s+3

3
A -1
2= 2+ DG +3)

K, = Sl_i)rpl [(s +1)

s2(s+ 1)(s+ 3)] ~2

K, = lim [(s + 3)

s—-3

s2(s + 1)(s + 3)] 6
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ce1) = 3 _1. G, 32 1/6 o4
S MAa+Da+3 11 1+1 1+3 173
1 4/3 3/2 1/6
C(S)_s2 s +S+1 s+3
Transient response is obtained by Laplace Inverse:
()=t et et — L3t
C = 3 5 e 6 e
Steady state error,
e . G2 (s)H(s)
ess = S T e GG S T S T e 6 eam L
Since, U(s) =0 and R(s) = 1/s?
. 1/s2 _p 1 ] ~ 1
Css = 0 T+ 6L (5)G,()H(s)  s201s + 5G,(5)G,(s)H(s)) lim 5G; ()G (5)H(s)
S—
. | 3 3
Kv = £1_I}(l) SGl(S)GZ(S)H(S) = l‘l_I)I(l)Sm = Z
_ 1 _ 1 _ 4
s Tk, T3/4 3
Another way (for a unity feedback only)
e(t) =r() —c(®)
4 3 1 4 3 1
—_ _ —_,—t _ -3t — _— __p-t — ,—3t
e(t)=t—|t 3+Ze e 37 3¢ +6e
Steady state error,
4 3 1 4
€ss = e(oo) - § - Ee_(oo) + 86_3(00) = §
d) Both r(t) and u(t) are unit step functions,
3 S
C = R U
O = e+ O T srnern '@

o) - 3 1 2s 1
()= (s + 1)(s+3)§+(s+1)(s+3)§
3 2
‘)= 6 D6+ T GFrDG+3)
3+ 2s
C(s) =

s(s+1)(s+3)

Using the techniques of Partial Fraction Expansion:
K> K3

+1+s+3

K
C(s)=—+
s s

K =i 3+ 2s —1
1= 300 Ss(s+1)(s+3) B

29
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_ 3+ 2s 1
K, = lim, [(5 TG el T 2
K; = lim [(s+3) Stas  1__1
s>-3 s(s+1)(s+3) 2
1 1/2 12
C(S)zg_s+1_s+3

Laplace Inverse,
c®)=1—-(1/2)e t - (1/2)e 3¢
Steady state error,
B 1 Go(s)H(s)
s = S 6, 06 O TS T 6,060 L)
Since, both unit step input R(s) =U(t) =1/s

_ lim 1 ~ lim G2(s)H(s)
5501+ G1(s)G,(s)H(s) s-01+4 G,(s)G,(s)H(s)
! lim G, (s)H (s)
s T 14 lim G, ()G, (DH() 1 +1im G, ()G, (HH(s)
1 1

1 2 _ 2

s T1¥ £i_r)r661 (s)G,(s)H(s) 1+ }gi_r)r&Gl (s)G,(s)H(s) 1+ £i_r)raGl (s)G,(s)H(s)

Ky = I Gy ()G (IH) = iy s =

E —
14+ oo

eSS -

Another way (for a unity feedback only)

e(t) =r(t) —c(t)
e()=1—-[1—-(1/2)e t—(1/2)e 3] =(1/2)e t + (1/2)e~ 3t
Steady state error,

ess = e(0) = (1/2)e ™+ (1/2)e™3* =0

e) r(t) is a unit step function and u(t) is a unit ramp function u(t) = t, then

R(s) =1/sand U(s) = 1/s?

3
()= (s+1D(s+3) R(s)+

S
(s+1)(s+3) ues)

Cls) = 3 1 2s 1
(s) = (s+1D(s+ 3)§+ (s+1)(s+ 3)5_2
C(s) = 3 2

s(s+1)(s+3) * s(s+1)(s+3)
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5
% C6s) = s(s+1)(s+3)

Using the techniques of Partial Fraction Expansion:

C()—K1+ K, N K;
S_s s+1 s+3
5

K = i
1= s+ DG +3)

K2 = sl—i>IPl [(S D s(s+ 1D(s+ 3)] T2

Ks = sl—i>rP3 [(S +3) s(s+1)(s+ 3)] "6

5/3 5/2 5/6

Cls) = S _S+1+S+3
Laplace Inverse,
5 5 5
— _ _ _ -t _ ,—3t
c(t) = 375 + ce
Steady state error,
i 1 R(s) — 1 G2(s)H(s) Us)
= 1lims S 1m S
fos T o0 1+ G1(5)G(s)H(s) 14 G1(s)Gy(s)H(s)
— lim 1 T G, (s)H(s)
T 0T+ G,(5)G,()H(s)  s50 |5 + 5G,(5)G,(5)H(s)
1 lirr& G,(s)H(s)
— _ 5—
s T 1+ lim G, ()G (DH() ~ 1im 5G,(5)G(HH(5)
s— S—
1 1/2
“*T11k, K,
= hm G1(5)62 (S)H(S) = hmm
3 3
= 11m sG1(s)G,(s)H(s) = hr%Ss(s—+4) =3
1 1/2 2 2
€ss = =0-5=—-3
1+ 3/4 77 3
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% Another way (for a unity feedback only)
e(t) =r(t) —c(t)

5 5 5 5 5
et)=1—-|z—zet+-e3=1-c+-et——¢

© 3 2 6 3 2 6

Steady state error,

5 5 5 2

.. = e(oo :1—_+_e_(°°)__e_3(°°)=__

SS ( ) 3 2 6 3

32
ettt et sttt sas s
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Chapter 6
Laplace Transforms

arahidi University
Aeronautical Technical Engineering

Complex Conjugate Zeros:

Laplace transformed polynomial equation B(s) = L, (s)Dg(s)
may have complex zeroes usually occur in pairs which conjugate
each other. Complex conjugate zeros have same real parts and
equal but opposite imaginary parts as shown in the Figure.

S1, =a+jb
B(s) = [s = (a+jD)][s — (a = jb)(s =1)(s = 12) - (5 = Tm—2)
Multiplication of complex conjugate zeros yields,
[s — (a+ jb)][s — (a — jb)] = s? — 2as + a® + b*?
In which, is used to determine zeros for any quadratic equation.

For example
s?2+4s+9 =s? —2as + a® + b?

4 = —-2a a=-2

9 =a?+ b2 =4+ b2 b=F5

S12 =aFjb=-2FjV5

Another example:

s2+8s+ 12 =52-2as + a? + b?
8 =—-2a a=-4
12 = a? + b? = 16 + b? b = Fj2
S12 =a+jb=—-4+j(2)
Laplace transforms equation of control system,

complex conjugate zeros

Imaginary

Axis 4

 J

College of Technical Engineering

Si2=a+jb=-2,-6 Real zeros

Y(s) = A(s)

Using techniques of Partial Fraction Expansion yields:
Y(s) =

Transient response Laplace Inverse (general form),

y(t) — Kce(a+jb)t + K_Ce(a—jb)t + KleT1t + Kzerzt R

This can be expressed as,

1

y(t) = 5 |K(a + jb)|e% sin(bt + a) + Kje™t + Kye™t + - .-
+ Kn_zern_zt

Where,

K(a+jb) = [(s* — 2as + a® + b>)Y(S)]s=q+j»

K(a —jb) = [(s* = 2as + a* + b*)Y () ]s=a—j»
Constants K(a + jb) and its conjugate K(a —jb) are complex
numbers that have magnitude and direction as shown in Figure.

|K(a + jb)| = \/[Re. of K(a + jb)]? + [Im.of K(a + jb)]?
, Im.of K(a + jb)
Re.of K(a + jb)

a = tan™

Example 1:

c + K—c + Kl + KZ + Kn—z
[s—(a+jb)] [s—(a=jb)] s—n s—n S~ Th-2

[s = (a+jb)][s = (a—jb)](s —=7r)(s —12) -+ (5 = 1p—2)

_Zern_zt

Imaginary

Axis 4

b J
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Determine the transient response or the inverse transformation of the following 3
t transformed equation: '

aranidi

75
Y(s) =
O = T+ 136+ 6
x Solution:
s?+4s+ 13 =s%—2as + a® + b?
4 = —-2as a=-2
13 = a2 + b2 b =7F3
Si2=a+jb=-2+j3 complex conjugate zeros
75
Y(s) = . .
[s = (=2 +j3)][s = (=2 —j3)](s + 6)
¥ Using techniques of Partial Fraction Expansion yields:
K, K_, K,
Y(s) = — + —— +
[s=(=2+4+j3)] [s—(-2—-j3)] s+6

Where,
75 X
(s2+4s+13)(s +6)]

K, = Sl_i)rIlG [(s +6) 3

Laplace Inverse yields:
y(t) = K,e(2H3)t 4 K_ e(727J3)t 4 376t
Transient response could be expressed as:

1
y(t) = 5 |K(a + jb)|e% sin(bt + a) + K;e™¢

1
y(t) = 3 |K(a + jb)|e~?!sin(3t + a) + 3e7°¢
K(a +jb) = [(s* — 2as + a* + b)Y ($)]s=a+b;
75
(s2+4s+13)(s +6)
75
4+;3

K(a + jb) = [(32 + 4s + 13)
s=—-2+j3

K(a + jb) =

Magnitude of K(a + jb),
75 |75] 75

|4 +j31 14+3] Vaz 432

Angle a is obtained as:

4+ 3 75 4
Transient response or time solution of the control system,
y(t) = 5e %t sin(3t — 36.8°) + 3e 76t
The term [S5e~%'sin(3t — 36.8)] is an exponentially damped sinusoidal term introduced by a
pair of complex conjugate zeros.
Example 2:

The block-diagram representation of a hydraulic
system which provides the power for a numerically
controlled machine tool is shown in Figure. The forcing
function is r(t) = u(t) and all the initial conditions are
zero. Determine the response c(t) and the steady-state
error for a unit step input when,

r(t) + K c(t)
DD+ 6)

v

:
:
:
:
:
:
a=<xK(a+jb) =< > «(75) — <(4 +j3) = tan~! — — tan=15 = 0 — 36.8 = —36.8° %
:
:
:
:
:
:
:
:

<
<
<
<
<
<
<
<
<
<
<
<
<«
<
<
<
<
<
<
<
<
<
%
% |K(a + jb)|
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¥ (@) K=5 (b) K =9 (©) K=25

} Solution:

? transforms as shown in the Figure. Transfer function is,

¥ Since all the initial conditions are zero, the block-diagram could be represented by Laplace

C(s)‘

_K R(s)+ K
C(S) — s(s+6) _ K - | S(S T 6)
R(s) s(s+6)+K
€)= Zies 7k F
Since  r(t) = u(t), then R(s) ==
C(s) = K

s(s?2+6s+K)
! Steady-state error for a unit step input is determined as:
K, =limG(s)H(s) = 11
s—0
— 1 —
" T1+K, 1+

BsG+6)
1

a) For, K=5
5 5

s(s2+65+5) s(s+1)(s+5)

C(s) =

Since zeros are distinct, using techniques of Partial-Fraction-Expansion:

C()_K1+ LML
S_s s+1 s+5

K= Ll—l}(} [Ss(s +1)(s + 5)] -

11m [(s +1)

5 —
s(s+1)(s+ 5)] T4
11m [(s+ 5)

s(s+1)(s+ 5)] ~ 1

&
&
&
&
&
&
&
&
&
&
&
&
«
«
«
«
«
«
«
«
«
«
%
% 1 5/4 1/4

C(S)zg_s+1+s+5
Laplace inverse of transformed equation yields transient response,
5 1
— — _,—t __,-5¢t
c(t) =1 2 e 2 e
b) For, K=9
9 9
C(s) = =
s(s2+6s+9) s(s+3)?
Since zeros are distinct, using techniques of Partial-Fraction-Expansion:

Ca & K;

C(s) = + +—
(s) (s+3)2 s+3 s

9
— 1 2 | =—
€2 = slirys’ [(s +3) s(s+ 3)2]

K; =lim|(s =1

s—0 s(s + 3)2]
3

C(s) =

s(s+3)2:_(s+3)2+s+3+§
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For,s=1
3 Cy
M (1)1 + 3)2 (1+3)2 1+3 1 1
Ces) 3 1 + 1
s)=— - -
(s+3)? s+3 s
Laplace inverse of transformed equation yields transient response,
C,t9™ 1 C,_qt772 Cyt
C(t) = q + q-1 4 oeeees + Z2- + Cl e't + Kleﬁt 4 oo + Kn_qe‘fn—qt

(@-1! (g—2)! 1!
c(t)=[-3t—1]e 3 +1
c) For, K=25

C(s) = 25
5= s(s? + 65 + 25)
s?2 +6s + 25 =5s?—2as + a® + b?
6 =—2a a=-3
25=a*+b*=9+b? b =F4
S12 =a+jb=-3+j4 complex conjugate zeros
25
C(s) =

s[s = (=3 +jD][s — (=3 =j4)]
Since zeros are complex conjugate, using techniques of Partial-Fraction-Expansion:
K, K . K,
C(s) = —— + ——+—
N T e 7y B P gy 5 R

Where,
25

K, = li =1
1= 0% s(s2 + 65 + 25)

Laplace Inverse yields:
c(t) = K,e(3HNt 4 g e(=37J0t 4 K o1t
Transient response could be expressed as:

1
c(t) = B |K(a + jb)|e% sin(bt + a) + K e™!

1
ct) = 7 |K(a + jb)|le 3tsin(4t + a) + 1

K(a +jb) = [(s* — 2as + a® + b*)C(5)]s=q+bj

(s2+6s+25)__,, ., -3+j4
Magnitude of K(a + jb),
K(a+ b)| | 25 | [25] 25 .
a = . e . e —
J -3 +j4l  |-3+j4] [(=3)2 + 42
Angle « is obtained as:
25 0 —
= j = = — — j = -1__ _ 1l __=—0—- (-
a=<xK(a+jb)=x 3174 %(25) — «(—3 +j4) = tan 7c tan 2 0— (—36.8)
= 36.8°
Transient response or time solution of the control system,

5
c(t) = Ze_Bt sin(4t + 36.8°) + 1
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5 _3¢ . . . . . .
The term [Ze 3t sin(4t + 36.8°)] is an exponentially damped sinusoidal term introduced 3

by a pair of complex conjugate zeros.
Transient Response:
A very good measure of transient response or transient behavior may be obtained §
directly from location of zeros of B(s) = L,(s)Dg(s) on s-plane. General form of transient
response in the case of real zeros is:
y(t) = K;e™t + Kye™t ... ... + K,e™t

¥ A negative zero 7; <0 located on left of imaginary axis yields an exponentially decreasing

: term while a positive zero r; > 0 located on right of imaginary axis yields an exponentially
increasing term. A zero at the origin r; = 0 results a constant term as shown,

4

> 3—s- Real
r£<o rt>° axs
{Ki . Kenit
0 = 0 -
7,<0 ¢ r=0 ¢ >0 t

Transient response of a control system with complex conjugate zeros is:
1
y(t) = 5 |K(a + jb)|e% sin(bt + a) + K et + K,e™! + - + K,,_,e™-2t

An exponentially damped sinusoidal term may be existed from complex conjugate
zeros of B(s). Real part a of complex conjugate zero is exponential factor, when zeros lie to
left of imaginary axis a <0 a decreasing sinusoidal term results while an increasing
sinusoidal term results when zeros are located to the right of imaginary axis as shown in
Figure. When zeros are located on the imaginary axis, a=0 a sinusoid of constant
amplitude results.

3['5— —————— -JE—————---_)i:
l |
| I
I | . Real
‘“I:u a>0 axis
|
)L |
_—"'"'""—_E)( —————— —)](
1 i 1 211 e
5 | Klatib)] blK(ui—jb]l_e s

. LK (a+ib)] et

AW [
° /}&Z}; v 0 /=
M /[

r a=0

f!n
/
"~

[
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Example 3:
For the system shown in Figure, the forcing function
is r(t)=et and all of the initial conditions are r(t) & kK N 4 c® >
zero. Determine the response c(t) and steady-state - D+1 D+5

error for each of the following cases:

(a) K=1 (Home Work) (b) K=2
Solution:
Since all the initial conditions are zero, block-diagram R(s) + X 4 C(s)
could be represented by Laplace transforms as shown sv1 555
in Figure. -
Using the rule of combining blocks in cascade yields,
Transfer function is,
K R(s) + 4K C(s)
C(s) __ (sH1)(s#5) 4K 4 (s+1)(s+5)
R(s) 1+—2*  s?2+6s+5+4K
(s+1)(s+5)
() = s24+6s5+5+ 4KR(S)
b) K=2
() = s2 465+ 13 R(s)
. - 1
Since, 7r(t)=e then R(s) = e
C(s) =
&)= GFDeZr6s 1 13)

s2+ 65+ 13 =s? —2as + a? + b?

6 =—2a a=-3

13 =a? + b% =9 + b? b=%2

Si2 =a+jb=-3+j2 complex conjugate zeros

8
C(s) = - -
W - SGIs- (3 -2+ D
Using techniques of Partial-Fraction-Expansion:
C(s) = g + Ko y
[s=(=3+j2)] [s—=(=3—-j2)] s+1

Where,

Ky = slilzll [(s +1 (s+1)(s?2+65s+13) =1

Laplace Inverse yields:
c(t) = K,e(3+/2t y g (73712t 4 o=t
Transient response could be expressed as:

1

c(t) = 5 |K(a + jb)|e% sin(bt + a) + K e™*
1

c(t) = 5 |K(a + jb)|e 3t sin(2t + a) + et

K(a+ jb) = [(s* = 2as + a* + b*)C(S)]s=a+jb
8 8

K(a +jb) = (sz+6s+13)(5+1)(52+6S+13)

s=—3+j2
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Magnitude of K(a + jb),
8 [8] 8 8
K@+ b = || = 5 = Y
/ —2+j21 |-2+j2] [J(=2)2+22 <8

Angle «a is obtained as:

0 2
a =<K(a+jb) =< =x(8) —x(-2+j2) = tan‘lg— tan‘l_—2 = 0 — (—45) =45°

-2+ 2
Transient response or fime solution of the control system,
c(t) =V2e 3t sin(2t + 45°) + et

The term [vV2e~3tsin(2t + 45°)] is an exponentially damped sinusoidal term introduced
by a pair of complex conjugate zeros.
The steady-state error could be determined from transient or dynamic response:
e(t) =r(t) —c(t)
e(t) = et — [V2e 3t sin(2t + 45°) + e~t]
e(t) = V2e 3t sin(2t + 45°)
Steady state error,
ess = e(00) = /2e73(%) sin(2(0) + 45°) = 0
Damping Ratio and Natural Frequency:

Since a pair complex conjugate zeros introduces an
exponentially damping sinusoidal term, it can be expressed in terms
of damping ratio & and natural frequency w, rather thana and b.

[s — (a+ jb)][s — (a — jb)] = s? — 2as + a® + b*? B
wp = VaZ + b2 Undamped natural frequency \/
a = w,cosa = w, cos(mt —B) = —w, cosf ﬁ\
[s — (a+jb)][s — (a—jb)] = s® —2as + a® + b?> = s> + 2w, cos Bs + w2 P
Since,

—2as = 2w, cos B Actual amount of damping
For critical damping g = 0

—2a = 2w, cos B = 2w, Critical damping
Damping ratio is the ratio of actual amount of damping to critical damping.

2wy, cos
f—T—cosB

[s — (a+jb)]l[s — (a — jb)] = s? + 2§ w,,s + w?

A pair of complex conjugate zeros can be specified in ¢ and w, as:
S12 = —EwpFjwp /1 — &2

b=FJw?—a%=Fw,\1—cospf?=Fw,\J1—E2=uwy Damped natural frequency
Transient response is expressed in terms of damping ratio ¢ and natural frequency, (w,):

|K(a + jb)|e~¢%nt sin (wn\/ 1-—&2t+ 0() + Kje"t + K, _,e™m-2t

—1<é<1

y(t) =

1
Wp/1 — &2

Note, when the damping ratio ¢ is greater than one, the zeros are no longer complex
conjugate but are real. The response is no longer sinusoidal but is exponential. Consider the
following general plot of a pair of complex conjugate roots:

%

%

%

%

%

o %
Complex conjugate zeros can be expressed in ferms ¢ and w, as, %
%

%

%

%

%

%

%

%
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f=—1

1. When a <0 a decreasing exponential sinusoidal tferm results and the roots lie to the §
left side of imaginary axis where 0 < < 90° in which 1>¢ >0 Positive value of ¢ $§
yields a decreasing sinusoidal response term.

2. When a >0 an increasing exponential sinusoidal tferm results and the roots lie to the §
right side of imaginary axis where 90° < 8 < 180° in which 0> ¢ > —1 Negative value
of ¢ yields an increasing sinusoidal response term.

3. When a =0 a sinusoidal term of constant amplitude results and the roots lie on the
imaginary axis where B =90°in which & =0 zero value of ¢ yields a sinusoidal term
of constant amplitude.

Example 4:
Determine the general equation for the transient response of a second-order system fo a

unit step function change which occurs at t = 0. The operational form of the differential
equation is:

2

ws
D2+2€wnD+a)2f()

y(t) =

3
3
3
%
:
:
:
:
:
Assume that all the initial conditions are zero. Then solve for é =17? %
:

:

:

:

:

:

:

:

:

Laplace transform,

Wz _A(s)
s(s2 4+ 28w, s + w2)  B(s)
Wi

sls = (~§wntony1=)][s — (~§wn—wny1 - ¢2)]

Y(s) =

Y(s) =

Techniques of Partial Fraction Expansion

K, K_, Kl

s— (—fwn+wnm) s — (—¢wn— wnm)

Y(s) =

Transient response for control system with complex conjugate zeros could be expressed as:

1
y(t) = 5 |K(a + jb)|e% sin(bt + a) + K;e™¢
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y(t) = wn\/% |K(a + jb)|e~¢“nt sin (wm/ 1-—¢&2t+ a) + K,e™t
A(s)

K(a+]b)—[(s — 2as + a? +b2)B()

s=a+bj

wp

J $n " s(s? + 28wys + wf) s=—Ewp+wn/1-§2

K(a + jb) “n Un
a+j = =
_fwn-l'(‘)n 1- 52 _E +j\/ 1- 62
. w o d VA ek ,
K(a +jb) = - = —¢w, — jo,J1 — &2
i e o
|K (a +jb)| = |_Ewn — jwn1— EZ| = Wn
o = tan-1 Imaginary part of K(a + jb)
Real part of K(a + jb)
L Top1-8% \/ —fz \/1—52
a=tan ' —— =tan = tan
_f(‘)n
=i
~ 5 [ss(s2 + 2€a)ns+w,21)l
1
y(t) = 5 |K(a + jb)|le% sin(bt + a) + K et
1
y(t) = ————w, e “ntsin (w,/1 - E2t +a) + 1
Wpy/1 — &2 \ ( " )

The general equation for the transient response:
1
y(t) = —1_628‘5“’” sin (a)n\/ 1-¢&2t+ a) +1

This fransient response equation is valid for -1 <¢ <1

Foré =1,
w? w?
Y(s) =~ - 2y - 2
s(s? + 2w,s + w?)  s(s+ wy)
Using the techniques of Partial Fraction Expansion:
C C K
Y($) = — b ———  —

(s+wp)? s+w, s

<
<
<
<
<
<
<
<
<
<
<
<
<«
<
<
<
<
<
<
<
<
<
%
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2

. —w C 1

Y(1) = T t b+

DA+ wy) 14+wy)? 14w, 1
—wy, 1 1
Y(s) = - + -

(s+wyp)? s+w, s
Laplace inverse yields:
y(t) =1 — (wut + e “nt

Example 5:
Determine the damping ratio ¢ , undamped natural R(s) 4+ 75 C(s)
frequency w,, and damped natural frequency for the — >
system shown in Figure. What is the response c(t) of this - sts+2)
system to a unit step function excitation r(t) = u(t) when
initial conditions are zero ?
Solution:
Transfer function is,
25
C(s) o os(s+2) 25
R(s) 14+-2 s2+2s+ 25
s(s+2)25
() = s2+2s+ ZSR(S)
Since, r(t)=u(t) then R(s)= l
~ 25
Cls) = s(s? + 2s + 25)

sz+25+25=52+25wn5+w,21

25 = w? =5 Undamped natural frequency

2 =2¢w, =0.2 Damping ratio

b =Fwn/1—E2=F5/1— (O 2)2 = F2V6 Damped natural frequency

s2+ 25+ 25 =52 + 28w, s + w?
Transient response is expressed in terms of damping ratio ¢ and natural frequency w,:
1
e — i —Swnt gj _£2 rit ... Tn—at
y(t) wnle(a + jb)le sin (wm/l &2t + a) + K,e"t---+ K, _,e™-2

—1<&<1
Since, a = —¢w, and b= w,1— &2

wn

wn
~fwn +jon1=8  —{+j1-¢
, Wn _f ] 1- 52 .
K(a+jb) = == w0, — jon /1
N A N e
K@+ jb)] = |~§w, = jonT= 87| = oy

, Imaginary part of K(a + jb)
Real part of K(a + jb)

K(a + jb) =

a = tan™

—w.J1 =2 /1_ 2 1 —¢2
a=tan‘1n—5=ta el = tan~ V147

_gwn f
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K, =lim

1
y(t) =3

1
Wp/1 — &2

s—0

lss(s2 + ZEwns + wz)l

the damping ratio ¢
2.0
1.8
1.6
1.4
1.2
c(®) 1.0

0.6

0.2

|K(a + jb)|e% sin(bt + a) + K;e™t

wye~¢@nt sin (a)m/ 1-&2t+ a) +1

Influence of damping ratio & on transient response:

College of Technical Engineering

The response of a second-order system to a unit step function for various values of

2

e

—0.1

0.8

//
AN
0.8 \ e

04}

i s/ "
A AT \
¥ ZERS\S, \

Transient Response Specifications:

Figure:

e

tan™1 (1 —&2/-¢§)

Wgq

t

e Maximum percent overshoot is:

p

T

Wq

T

W/ 1 — &2

Wp/1 — &2

A typical response of a second-order control system to a step input function is shown in

e Rise fime t, is the time at which the response first attains its final steady-state value.
Thus final steady-state value occurs firstly at rise time t,.

_ tan™1 (1 —&2/-¢§) _

o Peak time t, is the time at which the response reaches its maximum overshoot.
Maximum value of y(t) occurs when:

12
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—h ~ —
PO = 1003""% — 100e(671-8%)

o settling time t is the time required before the response does not oscillate more than
some small percentage such as 2 Or 5 percent from the final steady-state value.

ty = % for 5%
t =i for 2%
* Sy,
Example 6:
For the feedback control system R(s) + 25 C(s)
shown in figure, determine the natural s(s+5)

frequency, damping ratio, damped natural -
frequency, rise time, peak time, percent
overshoot, and approximate 5 percent

settling time.
Solution:
25
C(S) _ s(s+5) _ 25
R(s) 14+-2 s+ 5s+25
s(s+5)
C(s)=————=—R
(5) s? + 5s + 25 Q
s+ 55+ 25 =52+ 2fw,s + w?
In which:
w? =25 and w, =5
26w, =5 and &§=05

e Natural frequency w, =5
e Damping ratio §=05
Damped natural frequency:

wg=b=wnf1—&2 =51—(0.5)2 = 433 rad/s

e Rise time,

_ tan—l( /11— 62/_5) 3 tan—1 ( [1— (05)2/_05)
i Wq - 433
e Peak time,

£ = =" 0725
o, 433 98

e Percent overshoot,
PO = 100e(~57V1787) = 100e(~OHTVI=057?) _ 14 30,

e Approximate 5% settling time,

«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
%
% [ ]

%
%
%
%
|
|
=0.483s %
|
|
|
|
|
%
%
%
%
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Routh's Stability Criterion:
There is a major difficulty to determine the roots of the characteristic equation of a §
feedback control system. Routh's stability criterion is a method for determining whether or §
not any of the roots of the characteristic equation are in the right half-plane.

e Worite the characteristic equation in the general form:

byS™ 4 bpy_1S™ 1 4 by_ps™TZ 4 e e + bys?+bis+b,=0
e Arrange the coefficients of the characteristic equation as:

b, b,_, bn_4 by
bn_1 bn—3 bn_s by 7
€1 Cy C3 Ca
dy d, ds

€1 e
h f2
0

g1
h

e The row of c is evaluated as:
__bn—lbn—z _'bnbn—3

bn—l
__bn—lbn—4 _'bnbn—s

bn,

-1
bn—lbn—G _'bnbn—7
bn—l

e The coefficient d is obtained as:

Clbn—3 _'bn—lcz
d1=

€1

C1bp_s — by_1C3
dz =

)4
)4
)4
)4
)4
)4
)4
)4
)4
)4
%
C1 %
e Process should be continued until one more row is obtained than the order of the %
differential equation. %
Example 7:
Consider the characteristic function and examine the stability %
s*+3s3+s2+65+2=0 %
Solution: %

()
[
—_
O © N O B
o

13

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
2
2
2
2
2
2
2
2
2
2
2
«
«
«
«
«
«
«
«
«
«
«
«
«
<
<
<
<
<
<
<
<
<
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Since the number of changes of sign of the coefficients in the first row is two then two §
roots located to the right of the imaginary axis. '
A zero in the First Column:
When one of the coefficients in the first column is zero, it may be replaced by a very small §
number ¢ for the purpose of computing the remaining coefficients in array.
Example 8:

Consider the characteristic function and examine the stability
s°+25s*+4s3+8s2+10s+6=0

Solution:
s® 1 4 10 0
s* 2 8 6 0
s® 0~ e 7 0
s? 8 — 14/¢ 6
st 7 0
s° 6 0

Since 8 — 14/¢ is a very large hegative number when ¢ is positive and is a very large positive §
number when ¢ is negative. Therefore two sign changes in first column and characteristic
equation has two roots located to the right of imaginary axis.
A row of zeros:
A row of zeros occurs in Routh's array means that the characteristic equation has:

e A pair of real roots with opposite signs.

e Complex conjugate roots on the imaginary axis.

e A pair of complex conjugate roots with opposite real parts.
The following procedure should be implemented:

e Auxiliary equation A(s) is formed using coefficients of the row above row of zeros.

e Derive the auxiliary equation with respect to s and replace the coefficients of row of

zeros by coefficients of the derived auxiliary equation.
e Continue solving according to the Routh's Criterion techniques.

%
%
%
%
%
Example 9: %
%
%
%
%
%
%
%
%
%
%

Determine the stability of the control system whose characteristic equation is:
s+ 655+ 10s* + 1253+ 1352 — 185 — 24 =0
Solution:
1 10 13 —24 0
s5 6 12 —-18 0
8 16 —24 0
s 0 0 0

Auxiliary equation is formed from the row above the row of zeros,

A(s) = 8s* + 1652 — 24 dfi—(j) — 3253 4 325

st 1 10 13 —24 0
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sS 6 12 ~18 0
s 8 16 —24 0
s® 32 32 0

S 8 —24 0

s 128 0

S —24

One sign changes from positive to negative, therefore there is one root of the characteristic
equation is located in right half-plane and system is unstable.
Example 10:

Determine the stability of the control system whose characteristic equation is:
s®+3s°+2s*+ 452 +125s+8=0

Solution:

s6 1 2 4 8 0
s° 3 0 12 0

s* 2 0 0

s3 0 0 0

Auxiliary equation is formed from the row above the row of zeros,
A(s) =2s* +8 9%2=8§

s6 1 2 4 8 0
s> 3 0 12 0

s* 2 0 0

s3 8 0 0

s? O=~¢ 8 0

R 0

There are two sign changes, therefore two roots of the characteristic equation are located
in the right half-plane and the system is unstable.

EESAARRARARAARRRASAAARRARAAAARRASAAAAARARRAAARAARARAARARARAARRRARARRRARRARARAARRRAARAARAARRARAAAARRARARRARRRRRRR AR ARy
%)
=
o
S




arahidi University utomatic Control Engineering College of Technical Engineering

Aeronautical Technical Engineering 2019-2020
Chapter 7

Root Locus Method:

Transient response of a control system is governed by location of the roots of §
characteristic equation (zeros of characteristic function). Therefore factored form of $
characteristic equation plays an important role in transient response of control systems
Then transient behavior could be improved by selecting appropriate locations of roots or §
zeros. Therefore the trajectories (root loci) of the roots of characteristic equation should
be investigated when a certain system parameter varies such as K. '
Example 1:

Figure shows Laplace transform of a control system when
all initial conditions are zero, determine the response c(t)
when r(t) =0 and ¢(0)=¢(0)=1, for each of the -
following cases:

(a) K =0, (b)K =3, (c) K =4, (d) K=38
Then, plot the results of factored form on s-plane.
Solution:

R(s) + K C(s)
' s(s+4)

_K
C(S) _ s(s+4) _ K

R(s) 14K  s2+4s+K
s(s+4)

Differential equation is:
c(t) K
r(t) D2+4D+K

(D% + 4D + K)c(t) = Kr(t)

For r(t) =0, Laplace transform,
s2C(s) —sc(0) — ¢(0) + 4[sC(s) —c(0)]+ KC(s) =0
s+5
() T sZt4s+ K
a) ForK =0
s+5 s+ 5
s2+4s+0 s(s+4)

%
%
%
%
%
%
Techniques of Partial Fraction Expansion yields: %
%
%
%
%
%
%
%
%
%

C(s) =

K K
() =—+—

s+4
S+ ] = Z KZ = lims_)_4 [(S + 4)

s+5]_ 1

K; = limg_, [s

s(s+4) s(s+4) 4

5/4 1/4
C(S)=%_S-I/—4

Laplace inverse gives transient response or time solution,

c(t) = (5/4) — (1/4)e™™
For, K =0, the factored form of characteristic equation is, s?+4s+0=s(s+4)
b) For K =3

s+5 s+5
s2+4s+3 (s+1)(s+3)
Techniques of Partial Fraction Expansion yields:

C(s) =
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Ky K,
C(S)=S+1+S+3
) s+5 ) s+5
ko= lim |G+ D3 = 2 Ko = lim, [(s T e+l
2 1
C(s)_s+1_s+3

Laplace inverse gives the transient response or time solution,

c(t) =2e t—e™3t
For K = 3, factored form of characteristic equation is, s?+4s+3=(s+1)(s+3)
c) ForK =4

s+5  s+5
s2+4s+4  (s+2)2
Techniques of Partial Fraction Expansion yields:

C(s) =

Cz Cl
C(s) = +
(s) (s+2)2 s+2

. s+5
CZ = 11m5—>—2 [(S + 2)2 (S+2)2] = 3

145 3 L =
c(1) = (1+2)2 ~ (142)% ' 142 Gt

3 1
C(s) =

(s +2)? \ s+2
Laplace inverse gives transient response or time solution,
c(t) = (1+3t)e %
For K = 4, factored form of characteristic equation is,
s?+4s+4=(s+2)?
d) For K =8
s+5

s?+4s+8
s?+4s+ 8 =5s?—2as+ a* + b?
r,rn = -2 1]2
s+5
[s = (=2 +j2)][s = (=2 = j2)]
Transient response or time solution is;

C(s) =

C(s) =

s+5
s%+4s+8l-_54)7

|K(a +jb)| =vV9+4=+13
2

a=tan 1= =33.6°

K(a+jb) =|(s? +4s+8) =3+;2

Then,

V13
c(t) = Te‘Ztsin(Zt + 33.6°)

For K =8, characteristic equation has complex conjugate roots located at —27F ;2 the
factored form is,
s2+4s+8=[s—(-2+2)][s — (-2 —j2)]

Finally, roots of the characteristic equation with different values of K could be plotted in
Figure shown such a plot is called a root-locus

%

%

%

%

%

c(t) = llK(a + jb)|e%sin(bt + @) %
” %
%

%

%

%

%

%

%

%

%
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plot.

\‘.‘. 1_-
60" ™.
K50 K53 K4 fig=3"[K=0 FReal

-5 -4 -3 -2 -1 1axis

4+

Let it be desired to have a damping ratio ¢ = 0.5, then, B = cos™' ¢ = 60°, Line with
angle B = 60° intersects root-locus plot at corresponding roots (graphically):
r,—2Fj2V3
The value of K = 16 is determined as,
[s — (=2 +j2V3)|[s = (-2 —j2V3)] = s? + 4s + 16
Thus, w2 =16 w, =4 and 28w, =4 §=05
Root-Locus Method:

Root-locus Method is a graphical approach for examining how the roots of characteristic
equation change with variation of a certain parameter such as gain K. Root locus is
essentially the trajectory of roots as K varies from 0 fo infinity. For each value of K the
corresponding roots of the characteristic equation may be determined directly from the
root-locus plot.

2
|
|
|
|
|
1. Factored Form of the Characteristic Equation: %
|
|
|
|
|
|
|
|
|

Consider Laplace transformed block diagram: R(s) + C(s)
R(s) 1+ G(s)H(s) HE)

1+ G(s)H(s) =0 Characteristic Equation

G(s)H(s) Open Loop Transfer Function

NgNy

DsDy
NNy is the numerator of the open loop transfer function,

1+ 0

D;Dy is the denominator of the open loop transfer function

Factorization yields,
NgNy = K(s — z1)(s — zp) -+ - (s —2zp)

DgDy = (s —p1)(s —p2) -+ (s —pn)
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Where, the gain K is the static loop sensitivity which is the product of all the constant §
terms in the control loop. Then, the characteristic equation,
K(s = 2)(s = 2) = (5 = Zm) _

(s=p)(—p2) (s —pn)

(s —z)(s—2zp) (s — zy,) , are called the zeros of open loop transfer function which are
roots of N;N, =0
(s —=p)(s —py) -+ (s — pn), are called the poles of open loop transfer function which are

roots of D;Dy = 0
General factored form of characteristic equation,
(s =P —p2) (s —pn)

=K
(s—2z)(s—2) (s —zm)
In root-locus plot, poles of the characteristic equation py,p,, - ,pn_are plotted as (x)
and zeros of the characteristic equation z,z,,-: ,Zy are plotted as (O) where n is the

number of poles and m is the number of zeros and usually, n > m.
e Poles of characteristic equation are obtained at K =0 then,
(s —=p)(s—p2) - (s—p) =0
e Zeros of the characteristic equation are obtained at K = o, then,
(s —2z)(s —z5) (s=2zp) =0
Note: Since K =0 at poles, then a locus starts at each pole and terminates at a zero
where K = o
» Magnitude condition for the factored form of characteristic equation,
|s —palls = py| -~ |s = Pal
Is = zy|ls — zg] -+ s — zpm|
Magnitude condition is used to obtain values of the gain K at any point on root-locus plot.

» Angle condition for the factored form of characteristic equation,
[« —p)+t(—p)++<(—pI] - [« (s —z)+€ (s —22) + - +% (s — zp)] =% (—K)

= |-kl

n m
Z<(s—pi)—2<(s—zi)=180°$k360° k=0,1,23,
i=1 i=1
In order that a point in s-plane be a root of characteristic equation and thus lies on a
locus of the roots, it is necessary that this point satisfies angle condition.
2. Location of Loci Along Real Axis:
Loci may be investigated along real axis using angle condition,
n m

Z<(s—pi)—z<:(s—zi)=180°$k360° k=0,1,23,"
i=1 i=1
Complex conjugate poles or zeros do not affect the location of the loci on the real axis.
General Important Rule,
I. There is never a locus to the right of the first pole (0) or zero (x) on the real
axis, but there is always a locus to the left of the first pole (0) or zero (x).
II. There is never a locus to the left of the second pole (0) or zero (x), but there is
always a locus to the left of the third pole (0) or zero (x).
IIT. There is never a locus to the left of the fourth pole (0) or zero (x), but there is
always a locus to the left of the fifth pole (0) or zero (x).

4

T .
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? 3. Asymptotes as s Approaches Infinity:
Since loci starts at pole (x) and terminates at zero (0), so when, n # m, asymptotes §
represent location of loci for large values of s
* n—m Number of distinct asymptotes

" Asymptotes intersects real axis at point g, (point of intersection)

i=1Di — Ni=1Zi
n—-m

c =

* Angles of asymptotes:

! 180° + k360°

3 «s=—- k=0,1,2,3,
. n—m

$ 4. Break-away and Break-in Points:
2 = Break-away point is the point where a locus breaks away from real axis while Break-in §
point the locus breaks into real axis.
= For specified segment on real axis gain K has its maximum value at break-away point §
% while it has minimum value at break-in point.

% " These two points could be obtained by setting (dK/ds) is equal o zero.
¢ 5. Angles of Departure and Arrival for Complex Conjugate Roots:
% " Angle of departure is the angle at which a locus departs or leaves a complex pole (x) §
% whereas angle of arrival is the angle at which a locus arrives or approaches a complex
% zero (0).

% " Their values are obtained by taking a frial point s closer to complex pole (x) or
s complex zero (o) and applying angle condition.

% Points Where Root Locus Cross the Imaginary Axis:

e Root locus plot may cross the imaginary axis.

% e Value of corresponding K at which root-locus plot crosses the imaginary axis could be
% determined using principles of Routh's Stability Criterion.

e Complex conjugate roots which cross the imaginary axis are determined from the
% auxiliary equation which is existed in Routh's array.

% 7. Some Notes Taken into Consideration to Construct Complete Root-locus plot:

o

e Root locus is symmetrical about real axis.
e Determine a sufficient number of points that satisfy the angle condition.

:
:
:
:
:
:
Example 2: 3
:
:
:
:
:
:
:
:
:

Construct the root-locus plot for the system shown R(s)
in Figure then examine locus on point (-8) and determine
the values of K at which the system becomes unstable. -
Solution:
1. Factored Form of the Characteristic Equation
C(s) _ K(s +4)
R(s) s(s+2)+K(s+4)
s(s+2)+K(s+4)=0 Characteristic equation
Factored form of the characteristic equation:
s(s+2)
(s+4)
Number of poles, n=2 p; =0 p,=-2 Number of zeros, m=1 2z, =—4

| KGs+a) | )
s(s+2)

5
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2. Location of Loci Along Real Axis:
n m
Z<t(s—pi)—z<(s—zi)=180°$k360° k=01,23,"
i=1 i=1

[« (s =0+« (s+2D]-<« (s +4) = [¢p1 + 2] — ¢35
" For right side of p; =0, angle condition,
= [0° 4+ 0°] — 0° = 0° # 180° + k360°

It doesn't satisfy angle condition, no locus on right side of p; =0
= Between p; =0 and p, = -2, angle condition,

= [180° + 0°] — 0° = 180° = 180° + k360°

Angle condition is satisfied, there is a locus between p; =0 and p, = -2
" Between p, =—-2 and 2z, = —4, angle condition,

= [180° + 180°] — 0° = 360° # 180° + k360°
Angle condition doesn't satisfy, there is no locus between p, = -2 and 2z, = —4

" For left side of z; = —4, the angle condition,
4 = [180° + 180°] — 180° = 180° = 180° F k360°
% Angle condition is satisfied, there is a locus to left side of z; = —4
% 3. Asymptotes as s Approaches Infinity:
% n-m=2-1=1 Number of asymptotes 3
% Intersection point of asymptotes with real axis, %
4 o = LD — X217 _ 0+ (=2)—(—4) _ > 3
% ¢ n—m 1 %
$  Angles of asymptotes, 2
180° + k360° 180°
% <ts=——"—" k=0,123,-- +«s=——=180° %
n—m 1
% 4. Break-away and Break-in Points: %
s(s+2) dK (s+4)(2s+2)—s(s+2)
K=" — = =0
% s+4 ds (s +4)? %
% (s+4)(2s+2)—s(s+2)=0 s24+85+8=0 s, =-1171 and s, =—6.828 %
% For oy, = —1.171, K = |-K| = =T = 0343 break- away point %
% For a,, = —6.828, K=|-K|= "6":2"5';;213;"3“' = 11.656 break-in point %
% 5. Angles of Departure and Arrival for Complex Conjugate Roots: %
% No angles of departure and arrival because no complex roots in characteristic equation. %
6. Points Where Root Loci Cross the Imaginary Axis:
% s(s+2)+K(s+4)=0 s2+(2+K)s+4K =0 %
% Routh's Array %
s? 1 4K 0
% st 2+K 0 %
% s 4K %
% The value of K which makes a row of zero is, K = -2, %
% Then, the auxiliary equation, %
A(s) =s?+4K =0 s2—-8=0 S12 = F2V2 (real)
% No points cross Imaginary axis %
% ; :
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7. Some Additional points:
o s=—-2+4jw Determined from characteristic equation,
s(s+2)+K(s+4)=0 Characteristic equation
(—24+jw)(—2+jo+2)+K(-2+jw+4)=0 (—0?+2K)+j(K—2)w =0

For complex number to be zero, its real and imaginary parts should be zero,

—w?+ 2K =0 - eeeeeeeeeee (1)
(K=2)w =0¢eeeeeeee - (2)
Non-trivial solution yields, K =2 and, w=F2 then, s=-2%j2
e s=—-6+jw
s(s+2)+K(s+4)=0 Characteristic equation

(—6+jw)(—6+jo+2)+K(-6+jwo+4)=0

(—w?—2K+24)+j(K—10)w =0
For complex number to be zero, its real and imaginary parts should be zero,

— W2 — 2K 4+ 24 = +ovvereerennenn (1)
(K=10)w =0 - cv weevee e (2)
Non-trivial solution yields, K =10 and, w=7F2 then, s=-6%;2
Note: Locus follows circular path in the case of two poles and one zero.

/\j

34

KI=0 . \Real

-8 é
-6.828 L
K=11.656

-1.171

:
:
:
:
:
:
K=0343 3T %
:
:
:
:
:
:
:
:
:

Point (—8) is located to the left of the first zero (z; = —4) where it is a locus. Or it could be
examined by angle condition of the factored form of the characteristic equation,

= [180° + 180°] — 180° = 180° = 180° F+ k360°
Where, angle condition is satisfied.
Magnitude condition at point (—8)

P T
|—8 + 4|
s(s+2)+K(s+4)=0 Characteristic Equation
s?+14s+48=0
Solve yields, s; =—8 and S, = —6
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Values of K at which the system becomes unstable is determined using Routh's Stability §

Criterion.
s(s+2)+K(s+4)=0
s?+(2+K)s+4K =0

Routh's Array,

Characteristic Equation

K

College of Technical Engineering

C(s

s? 1 4K

st 2+K

s 4K 0
For the system to be stable,

2+K>0 K>-2
4K > 0 K>0

System becomes unstable for the values of K, K<0
Example 3:
Sketch the root-locus plot for the closed
loop control system shown in Figure. R(s) 4
Solution: -
Transfer function is,

C(s) K

s(s? +12s + 45)

R(s) s(s2+12s+45)+K
Characteristic equation,
s(s?+125s+45)+K =0
1. Factored form of the characteristic equation:
s(s? +12s +45) = —K
Factored form of characteristic equation,

s[s—=(=6+j3)][s—(-6—j3)] =—K
" Number of poles, n=3 (there are three loci)
p1 =0, P2, 03 = —6+ /3
®" Number of zeros=m=0
2. Location of Loci Along Real Axis:
n m
Z<t(s—pl-)—z<(s—zi)=180°$k360° k=0,1,2,3,--

i=1 i=1
[< (s —p)+< (s — py)+< (s — p3)] = 180° F k360°
[0, + @, + B3] = 180° F k360°

Since complex conjugate poles do not affect the location of the loci on the real axis.

¢, = 180° F k360°
® Consider right of p; =0, the angle condition,

0° = 180° + k360°

It doesn't satisfy angle condition, no locus on right side of p; =0
® Consider left of p, =0, angle condition, 180° = 180° ¥ k360°
Angle condition is satisfied, there is a locus to left of p, =0

3. Asymptotes as s Approaches Infinity:
n—m=3-0=3  Number of distinct asymptotes
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i — 2tz [0+ (=6+j3)+(—=6—j3)]—-0
c = = = —4
n—m 3—0
180° + k360°
ts=——— k=0,123
n—-m
180° + k360° _
<7ts=f=60°+k120°
e for k=20 <+ s =60°Fk120° = 60° @, = 60°
e for k=1 <+ s =60°+k120° = 60° + 120° @, and @; = 180° or — 60°
4. Break-away and Break-in Points with Real Axis:
s(s? +12s+45)=—-K s3+12s2 +45s = —K

_‘;_’;:352+24s+45:0 or s*+8s+15=0 Solve yields, s;,=-3 and s, =—5
o For o9, =-3, K=|-K|=[(-3)[(—3)*+12(-3) +45]| =54  break- away point

e For og,,=-5, K=|-K|=]|(-5)[(-5)?+ 12(-5) + 45]| =50 break-in point
5. Angles of Departure and Arrival for Complex Conjugate Roots:
For the pole —6 + ;3 , angle condition,
n m

z P (S—pl-)—z « (s — z;) = 180° F k360°

i=1 i=1

[« (s —p)+< (s —py)+< (s —p3)] =180° + k360°

[0 + @4 + B3] = 180° F k360°

As frial point approaches pole —6+j3 , angles
@, and @3 could be easily obtained:

3
@, = 180° — tan_lg = 180° — 26.56 = 153.434°, @3 =90°
[153.434° + @, + 90°] = 180° F k360° o
@4 + 243.434° = 180° + k360° ot
For k=0, @4=—63.434° e
For k=1 @,;=296.566° or —63.434° 3

Angle of departure from the pole (—6 —j3), @4 = 63.434°, or —296.566°

6. Points Where Root Loci Cross the Imaginary Axis:
s(s?+12s+45)+K =0 s34+ 12524455+ K =0
s3 1 45 0

%
%
%
|
|
|
s? 12 K 0 %
|
|
|
|
%
%
%
%

<€ ==

A

. 540 — K
12
s0 K

>0 - K K < 540
12

K = 540 A(s) = 1252+ K =0 12524540 = 0
1, = 7j3V5 = Fj6.7

0

7. Some Additional points:

s(s?+125+45)+ K =0 Characteristic Equation
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B Let's determine the Point s = -2 + jw
(—24+jo)[(-2+jw)? +12(-2 +jw) + 45]+ K =0
(—6w?+K—50)+j%w—w3) =0
For complex number to be zero, its real and imaginary parts should be zero,
—B6WZEHF K =50 =0 covveeverrerernneanns (1)
Ow — W3 =0 corvvrvrr e (2)
9w — w3 =0, wO@—-w? =0, w(B—-w)B3+w)=0, w=F3 S10=—-27Fj3
B Now determine the Point s = —5.5 + jw
(=554 jw)[(—5.5 + jw)? + 12(-5.5 + jw) + 45] + K = 0

(—=50.875 + 4.5w2 + K) + j(3.75w — w3) = 0
For complex number to be zero, its real and imaginary parts should be zero,
4502 + K —50.875 =0 «++veveeeveennneennnn (1)

375w — @3 =0 cor e (2)
w(3.75 — w?) =0, w=0, 3.75—w? =0 w = +1.93, s1, = —5.5F1.93

Real
N

2.
axis
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C(s) K(s+1)
R(s) (s+2)(s2+4s+5)+K(s+1)

Characteristic equation,
(s+2)(s?2+4s+5)+K(s+1)=0
1. Factored form of the characteristic equation:

(s+2)(s?+4s+5) (s+2)[s—(=2+)][s—(-2-))]

= =—K
s+1 s+1
" Number of poles=n=3 (there are three loci)
p1 = -2, P2,P3 =2+
" Number of zeros=m =1 z; = —1

2. Investigate Location of Loci Along Real Axis:
Using angle condition,

th(s—pl) Z<(s—zl)—180°+k360° k=0,123,

= T G+t G = b — b,

It doesn't satisfy angle condition, no locus on right side of z; = -1

" Between z; =—-1 and p; =-2, angle condition,
0—180 = —180 = 180° ¥ k360°

" Left side of p; = —2 angle condition,
180 — 180 =0 =# 180° + k360°

It doesn't satisfy angle condition, no locus to left of p; = —2
3. Asymptotes as s Approaches Infinity:

It is well noticed that no any break-away and break-in points on real axis.
11

RRRSRARAARRAARRARRARARARAARRARAAARARARARAARAARARARARRAARAARAARARARARRARARARARAAARARARARARARARAARAAARAAARARARARARARARARARARARARARARAY

® Right side of z; = —1, angle condition, 0—0=0 + 180° F k360°

Example 4:

Sketch root-locus plot for the closed loop R(S) + , K(s+1) C(s)
control system shown in Figure and determine _ (s +2)(s*+4s+5)
values of K at which the system becomes
unstable.

Solution: Transfer function is,

Angle condition is satisfied, there is a locus betweenz;, = -1 and p; = -2

n-m=3-1=2 Number of distinct asymptotes
. = fe1Di — Xiz1 Z _ [-2-2+4+j—-2—j]-[-1] _ _E
¢ n—m 3—-1 2
180° ¥ k360° 180° + k360° _
<s=— k=0123,: <s=———=90°+ k180°
n—m 2
e fork=0, «s=90°+k180° =90°, @, =90°
e fork=1, «s=90°+k180° =90° + 180°, @, = —90° or 270°
4. Break-away and Break-in Points with Real Axis:
_(s+2)(s*+45+5)
B s+1
dK  (s+D[+2)2s+4)+ (s +4s+5)] = [(s +2)(s* + 45+ 5)] _
ds (s+1)2 B
s3+3s2+4s+1=0 s1,8, = —1.3412 F j1.1615 s3 = —0.3177

utomatic ontroI Engineering College of Technical Engineering
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5. Angles of Departure and Arrival for Complex Conjugate Roots:
Value of angle of departure is obtained by taking a trial point
s closer to the pole —2 + j and applying angle condition,

n

th(s—pl) Z<(s—z)—180°+k360° k=0,123,-
i=1 =1

[« (s —p)+< (s —p)+<% (s —p3)] — [« (s —z;)] = 180° F k360°
[@q + @, + B3] — [@,] = 180° + k360°
As ftrial point approaches pole —2 +j, angles @,,8,, and @;
could be easily obtained:
1
180°— ¢y =tan™'T=45°, @, =135° 0, = Ps = 90°
[0, + 90° + 90°] — [135°] = 180° F k360°
@4 + 45° = 180° + k360°
For k=0, @¢,= 135,

Fork=1, ¢, = —225° @, = 135°, or —225°
Angle of departure from pole (-2—-j) is ¢y = —135°, or 225°
6. Points Where Root Loci Cross the Imaginary Axis:
(s+2)(s?2+45s+5)+K(s+1)=0 Characteristic Equation
s3+6s2+(K+13)s+(10+K) =0
s3 1 K+ 13 0
s? 6 10+ K 0
o 5K + 68 0
6
s? 10+ K
5K + 68
—% K > —13.6 10+K >0 K> -10
K =-13.6 A(s) =6s2+10+K =0 6s2—3.6=0 512 = V0.6 (real)

No points where root loci cross Imaginary axis,
For system fo be stable K should be,

System becomes unstable for values of K, K < —13.6
7. Some Additional points:
Point s=-22+jw could be determined,

(224 jw+2)[(-22+jw)?* +4(-22+jw) + 5]+ K(-22+jwo+1) =0

—0.208 4 0.08jw + 0.2w? + 1.04jw + 0.4w? — jw3 — 1.2K + jwK = 0
For complex number to be zero, its real and imaginary parts should be zero,
W2 —0.346 — 2K = 0 v evvverveneeeienann (1)

— W2 F 1 A2+ K =0 coeverveevennrneaenns 2)
Solve these equations simultaneously: w = F1.376 and s=-22%j1376

«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
«
%

:
:
:
;
:
:
K>-136 %
:
:
:
:
:
:
:
:
:




; arahidi University utomatic otroI Engineering College of Technical Engineering
8 Aeronautical Technical Engineering 2019-2020
! ‘T
» [ o -+ 1.376
| 35
) I 1 -+
: I -2+
5 1
—7 1-22
: : ?_. A >O 0 ' asz
-3 2 -1 1
: —2-J 14
g I —135°
g | —-1.376
4 [
% 1 -2 4
< I
4 I
< [
< |
< Vv
% Example 5:
% Consider the closed-loop control
¥ system shown and plot its poles and R(S)_+ K(s +2) J _s+3
% zeros. _ s(s+1)s
% Solution: Transfer function
C(s) K(s+2)(s+3)
% R(s) s(s+1)+K(s+2)(s+3)
% ss+1D+K(s+2)(s+3)=0 Characteristic equation,
1. Factored form of the characteristic equation:
% Factored form of the characteristic equation:
% s(s+1) K
% (s+2)(s+3)
n= 21 P = 0' P2 = _11 and/ m = 2! Zz = _Zr Zy = -3

% 2. Investigate Location of Loci Along Real Axis:

n m
% Z<(s—pi)—z<(s—zi)=180°$k360° k=0,123,

i=1 i=1
% [« (s—0)+<« (s+ 1] — [« (s+2)+<« (s +3)] = 180° F k360°
% [p1 + 2] — [p3 + pal = 180° F k360°

" For right side of p; =0, angle condition,
% = [0° + 0°] — [0° + 0°] = 0° # 180° F k360°
% It doesn't satisfy angle condition, no locus on right side of p; =0

= Between p; =0 and p, = —1,
% = [180° + 0°] — [0° + 0°] = 180° = 180° F k360°
% Angle condition is satisfied, locus between p; =0 and p, = —1
% 13
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= Betweenp,=-1andz, = -2,
= [180° + 180°] — [0° + 0°] = 360° * 180° F k360°
Angle condition doesn't satisfy, no locus between p, =—-1 and 2z, = -2
= Between z; =-2 and z, =-3
= [180° + 180°] — [180° + 0°] = 180° = 180° + k360°
Angle condition is satisfied, locus between z; = -2 and 2z, = -3
" For left side of 2z, = -3,
= [180° 4+ 180°] — [180° + 180°] = 0° # 180° + k360°
It doesn't satisfy angle condition, no locus on left side of z; = —3
3. Asymptotes as s Approaches Infinity:
Number of asymptotes,

n—-m=2-2=0
No asymptotes will be existed

4. Break-away and Break-in Points:
s(s+1) _d_K_(s+2)(s+3)(25+1)—s(s+1)(25+5)_0

(s+2)(s+3) ds [(s+2)(s+3)]?
(s+2)(s+3)2s+1)—s(s+1)2s+5)=0 452 +125s+6=0
s, =—0634  and s, = —2.366

e Fors, =-0.634, K =|-K| = 106341063441 _ 5 9718 break-away point
|—0.634+2||—0.634+3|

e Fors,=—2366, K = |—K| = 1—>3sll-236641]

=14 break-in point
|-2.366+2||-2.366+3|

5. Angles of Departure and Arrival for Complex Conjugate Roots:

No angles of departure and arrival because no complex roots in characteristic equation.
6. Points Where Root Loci Cross the Imaginary Axis:

ss+1D)+K(s+2)(s+3)=0 Characteristic equation,

Routh's Array
2 1 — 0

) 1+ 5K

%

%

%

%

%

%
. 6K %
%

%

%

%

%

%

%

%

%

1+K
145K 6K

P50 K>-1 and K S0 K>0
1+K 5 1+K

K= —i should be substituted in the auxiliary equation,
A(s)=52+i—KK=0 52—§=0 51,2:$\E (real)
No points cross Imaginary axis
7. Some Additional points:
o s= —§+jw Determined from characteristic equation,
ss+1)+K(s+2)(s+3)=0 Characteristic equation

3 3 3 3
<—§+jw><—§+jw+1>+K(—§+jw+2)<—§+jw+3)=0

14
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1+K)w?-075(1+K)+j201-K)w =0
For complex number to be zero, its real and imaginary parts should be zero,
2 1+ K)w? —=0.75(1 4+ K) =0 ooeeeveemneeennenn (1)
3 20— K)w =0 N )
Trivial solution must be discarded, W= 173 and s = —§$j\/2—§
2T
5 Real axis
< -4 -3
% 5 A
4 3 3 -1-\ -0.634
% -2.366 (_5 _jT) K =0.0718
4 K =14
3 o4
«
«
«
«
% .
% Example 6:
« -
< Sketch root locus. plof for the closed lo.op R(s) + KG+ DG +5)
control system shown in Figure then examine
. . s2+8s + 25
locus on point (-4) and determine the values of K -
% at which the system becomes unstable.
% Solution: Transfer function
C(s) K(s+1)(s+5)
% R(s) (s2+8s+25) +K(s+1)(s+5)
% (s2+8s+25)+K(s+1)(s+5)=0 Characteristic equation,
1. Factored form of the characteristic equation:
% (s? +8s +25) _ © [s = (=4 +,3)][s — (-4 —/3)] _ ©
% (s+D(s+5) (s+1)(s+5) a
% n=2, p,=-4+j3, p,=—-4—-j3,
m=2, z=-1, z,=-5
% 2. Investigate Locaﬁon of Loci Along Real Axis:
n
% th(s—pl) Z<t(s—z)—180 + k360° k=0,123,
i=1
% [<7: (s —p)+L (—p)] —[¢ (s —2z)+<% (s — z,)] = 180° + k360°
% [¢1 + ¢2] - [¢3 + ¢4] = 180° + k360° [¢1 + ¢2] = 180°
% —[¢5 + ¢,] = 180° F k360°
" For right side of z; = —1, angle condition,
% = —[0° + 0°] = 0° # 180° + k360°
% It doesn't satisfy angle condition, no locus to right side of z; = —1
% 15
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= Between z; =-1 and 2z, = -5,

= —[180° + 0°] = —180° = 180° + k360°

Angle condition is satisfied, locus between z, = -1 and 2z, = -5
" For left side of 2z, =-5,

= —[180° + 180°] = 0° # 180° + k360°
It doesn't satisfy angle condition, no locus on left side of z, = -5
3. Asymptotes as s Approaches Infinity:

Number of asymptotes,

n—-m=2-2=0
No asymptotes will be existed

4. Break-away and Break-in Points:
s? +8s+ 25 _52+85+25_

(s+1)(s+5) s2+6s+5
dK_(52+6s+5)(25+8)—(52+8s+25)(25+6)_0

ds (s?2 + 6s + 5)?
(s2+65+5)(2s+8)—(s?+85+25)(2s+6)=0 s2+20s+55=0
s; = —3.29 (break-in point) s, = —16.7 (negligible, no locus)

For s, =-3.29,

|s? +8s + 25|  [(=3.29)* + 8(—3.29) + 25| _
|s24+65+5] [(=3.29)2 + 6(—=3.29) +5|
5. Angles of Departure and Arrival for Complex Conjugate Roots:

For the pole —4 + ;3 , angle condition,

n m

z<(s—pi)—2<(s—zi)=180°$k360°

i=1 i=1

2.427

K=|-K| =

[« (s —p)+%£ (s —p)] — [« (s —z)+<% (s — z,)] = 180° + k360°

[0y + @,] — [@, + @3] = 180° F k360°
As trial point approaches pole —6 + j3, angles could be easily obtained:
@, = 90°

3
@, = 180° — tan_1§ = 180° — 45° = 135°

3
0; = tan‘li = 71.565°

[@4 + 90°] — [135° + 71.565°] = 180° + k360°
@4 —116.565° = 180° + k360°

@4 = 296.565° + k360°
For k=0, @y = 296.565° Angle of Departure
For k=1 @,=—63.435°
Angle of departure from the pole (-6 —j3) @, = 63.434°, or —296.566°
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Aj N
] —4+j3 13
2 I Regl I Regl
)4 1 2 1 -
2 axis 5 0 axis
X 13 —4—j3 13
¢ —4—j3
3 J
% 6. Points Where Root Loci Cross the Imaginary Axis:
% (s2485+25 +K(s+1)(s+5)=0 Characteristic equation
&
% (1+K)s?+(8+6K)s+5K=0
¢ Routh's Array
g s? 1+K 5K 0
2 .
3 s 8 + 6K 0
% s 5K
% For stability,
% 1+K>0 K>-1
4

8+6K>0 K > =3

% 5K>0 K>0
4 . . .
% K=-3 neglected, No points cross Imaginary axis
% 7. Some Additional points:
% e s=-35+jw Determined from characteristic equation,
s2+85+25+K(s+1)(s+5)=0 Characteristic equation
% (-35+jw)?*+8(-35+jw)+25+K(-35+jw+1)(-3.5+jw+5) =0
% —1+K)w?—-3.75K +9.25+ j(1 - K)w =0
% For complex number to be zero, its real and imaginary parts should be zero,
—(1+ K)w? — 375K +9.25 =0 ceceeeeeeveeneeeennn (1)

% 1-Kw=0 e (2)
% Trivial solution must be discarded, w = *¥1.658 and s =—-3.5F,1.658
% 17
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/\]'
—4+j3 +3
63.435°
+2
—3.5+1.658 K = 2427
o, =-329 T1
Real
O—+—f+—+—>0 >
5 4 13 S 1 0 axis
—3.5—j1.658
+ 2
—63.435°
—4 —j3 T3

Magnitude condition at point (—4)

|s? + 8s + 25|
|(s + DII(s + 5)|
C(=4)? +8(~=4) +25| _
A+ DI-4+5)]

K=|-K| =

K = |-K|

s?2+85s+25+K(s+1)(s+5) =0 Characteristic Equation
s2+85+25+3(s+1)(s+5 =0

452 +26s+40=0
Solve yields, s, = —4 and s, = —2.5
Values of K at which the system becomes unstable is determined using Routh's Stability
Criterion.
(s2+8s+25)+K(s+1)(s+5)=0 Characteristic equation

3

3

3

%

%

%

%

%

%

(1+K)s>?+(8+6K)s+5K=0 %

Routh's Array %

s? 1+K 5K 0 %
st 8 + 6K 0

s 5K %

%

%

%

:

:

:

:

For stability,
1+K>0 K>-1

4
8+6K>0 K>—§

5K >0 K>0
4

For the system to be stable, K>--

For the system to be unstable, K<-2




