

Preparation of solutions

College of Science

Department of Forensic Evidence Science

Edited by: Ass. Lec. Yaman Khalid

Lecture. 2

 2^{nd} semester – 2024

Solution: Is a special type of homogeneous mixture composed of two or more substances, one of them called solute and the other one is the solvent.

* A solution is created by dissolving one or more solutes in a solvent.

Concentration: Is a general term that expresses the quantity of solute contained in a given amount of solution

1- Concentration Percentage: There are three different ways of representing percent concentration:

a) Weight percent (wt/wt): It is the number of grams of solute per 100g of solvent or solution (wt/wt)

weight percent (wt/wt) = $\frac{wt. of solute}{wt. of solution} \times 100$

b) Volume percent (v/v): It is the number of milliliters of solute per 100ml of solvent or solution (v/v)

Volume percent $(v/v) = \frac{volume \ of \ solute}{volume \ of \ solution} x \ 100$

c) Weight -Volume percent (wt/v): It is the number of grams of solute per 100ml of solvent or solution (wt/v)

Weight-volume percent (wt/v) = $\frac{wt. of solute}{volume of solution} \times 100$

2- Molarity (mole /volume)

- Is the number of moles of solute per liter of solution.

- Molarity is expressed in mol L⁻¹

$$M=\frac{wt.}{m.wt.}*\frac{1000}{v(ml)}$$

wt. + m.wt. \rightarrow solute

volume \rightarrow solution

3- Normality (N)

- Is the number of equivalents weight per liter of solution.

$$N = \frac{wt.}{eq.wt.} * \frac{1000}{v(ml)}$$

wt. + eq.wt. \rightarrow solute

volume \rightarrow solution

Equivalent mass of acids

 $Eq = \frac{M.wt}{number of H} \longrightarrow Eq = \frac{Mwt}{2} = \frac{98}{2} = 49$ for H₂SO₄

Equivalent mass of Bases

$$Eq = \frac{M.wt.}{number of OH} \longrightarrow Eq. = \frac{Mwt}{1} = \frac{56}{1} = 56 \text{ for KOH}$$

Equivalent mass in (oxidation - reduction) reaction (Redox)

$$\mathbf{E}\mathbf{q} = \frac{Mwt}{\eta}$$

 η = change in oxidation state number

 η = numbers of electrons participate in oxidation - reduction processes (Redox)

Example :

 $2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \quad \rightarrow \quad 5Fe_2 \ (SO_4)_3 + 2MnSO_4 + K_2SO_4 + 8H_2O_4 +$

 $2MnO_4^- + 10Fe^{2*} + 8H^* \rightleftharpoons 10Fe^{3*} + 2MnSO_4$ (acidic medium)

 $Mn^{7+} \rightarrow Mn^{2+}$ (5 e gain – reduction)

 $Fe^{2+} \rightarrow Fe^{3+}$ (1 e loss – oxidation)

Eq. of KMnO₄ =
$$\frac{Mwt}{5} = \frac{157.9}{5} = 31.6$$

Equivalent mass for salts

$$Eq = \frac{Mwt}{\eta}$$

$(\eta) = \Sigma$ [no. of cations x its valency (cation charge)]

e.g: BaSO₄ ($Ba^{2+} + SO_4^{2-} \leftrightarrow BaSO_4$) η = Ba²⁺ (1) x (2+) =2

4- part per million (ppm)

$$ppm = \frac{wt.(mg)}{v(l)}$$

This equation is used when the substance has unknown molecular weight

conc.
$$(M) \frac{conc.(ppm)}{m.wt.*1000}$$
 ppm= M*m.wt.*1000

Standard Solution is a solution whose concentration is known accurately. Its concentration is usually given in Mol/L.

Preparing Stock Solutions

A stock solution is prepared by weighing out an appropriate portion of a pure solid or by measuring out an appropriate volume of a pure liquid and diluting to a known volume.

Preparing Solutions by Dilution

Solutions with small concentrations are often prepared by diluting a more concentrated stock solution. A known volume of the stock solution is transferred to a new container and brought to a new volume.

Dilution formula				
	$\mathbf{M}_{1}\mathbf{V}_{1}=\mathbf{M}_{2}\mathbf{V}_{2}$			
	M ₁ ⁼ molarity of the solution before dilution			
	V_1 = volume of the solution before dilution M_2 = molarity of the solution after dilution			
	V_2 = volume of the solution after dilution			

	Common Prefixes used with SI Units				
Prefix	Symbol	Meaning	Order of Magnitude		
giga-	G	1 000 000 000	10^{9}		
mega-	M	1 000 000	106		
kilo-	k	1 000	10 ³		
hecto-	h	100	10 ²		
deka-	da	10	10^{1}		
	base unit	1	10^{0}		
deci-	d	0.1	10-1		
centi-	с	0.01	10-2		
milli-	m	0.001	10-3		
micro-	μ	0.000 001	10-6		
nano-	n	0.000 000 001	10-9		

Quantity	Unit	Symbol
Volume	Litre	ł
Length	Meter	m
Mass	gram	g

Example/ prepare a solution of potassium permanganate at a concentration of 0.0002 M in 100 ml of distilled water. (M.Wt. of KMNO₄=158 g/mol)

Example/ from a 0.5 M of potassium permanganate solution, prepare a solution of 0.02 M in 100 ml. (The solvent used is distilled water)