
   1  
 

 

Education Higher of Ministry  

Research Scientific  and  

Al-Farahidi University 

ANTE Department 

 جامعة ألفراهيدي 

 قسم هندسة الطيران  
 

 

 

 

 

FLUID MECHANICS 

Static Fluid 
 



   2  
 

 

1.1 efinitions. 

1.2 Newton law of viscosity. 

1.3 Bulk Modulus of elasticity. 

1.4 surface tension. 

2. Fluid static. 

2.1 Definitions. 

2.2 Pressure at point. 

2.3 Hydrostatic law. 

2.4 Units and scale of pressure measurements. 

2.5 Manometers (pressure measurements). 

2.6 Force on plane surface. 

2.7 Force on curved surface. 

2.8 Buoyant force. 

2.9 Stability of floating and submerge bodies. 

2.10 Relative equilibrium. 

3. Fluid flow concept and basic equations. 

3.1 Definitions. 

3.2 continuity equation 

3.3 Euler equation of motion along streamline. 

3.4 Bernoulli equation (energy equation). 

3.5 Flow measurements (pitot tube, orifice meter, venture meter, nozzle). 

3.6 Resistance t flow in open and closed conduits. 

3.7Liear momentum equation and its applications. 

3.8 Introduction of pumping and turbines applications. 

4. Dimensional analysis and dynamic Similitude. 



   3  
 

4.1 The 𝝿 theorem. 

4.2 Discussion of dimensionless parameters (Reynolds No., Frouds No., Euler 

No, Weber No, Mach No.). 

4.3 Similitude: Models studies. 

 

 

 

 
 

References: 

1- Fluid mechanics, Vector L. Streeter and E. Benjamin Wylie. 

2- Fluid Mechanics and engineering application. 

Robert L. Dogerti and Joshef B. Frinzieng 



Chapter one Definitions    4  
 

 

 

Chapter one Definitions 
 
 

1- Fluid: It is a substance that deform continuously under the action of the shear 

force. Its either gas or liquids. 

2- Shear stress 𝑟 = 
𝑭 

= 
𝑺𝒉𝒆𝒂𝒓 𝒇𝒐𝒓𝒄𝒆 

= 
𝑵 

. 
𝑨 𝑺𝒖𝒇𝒂𝒄𝒆 𝒂𝒓𝒆𝒂 𝒎𝟐 

3- Shear force: It’s the force components tangent to a surface of liquids. 

4- Viscosity (μ): It’s the properties of fluid by virtue of which it offers resistance 

to shear. 

- Honey, Tar are example for high viscos liquids. 

- Water and air have very small resistance. 

- The viscosity of gases increase with temperature increasing. 

- The viscosity of liquids decrease as temperature increasing. 

- Units 𝜇 = 
𝑁.𝑠

 
𝑚2 

𝑜𝑟  
𝑘𝑔 

𝑚.𝑠 

- 𝑎𝑛𝑑 𝑐𝑜𝑚𝑚𝑜𝑛𝑒 𝑢𝑛𝑖𝑡𝑠 𝑖𝑠 𝑃𝑜𝑖𝑠𝑒 → 1 𝑝𝑜𝑖𝑠 (
 𝑔 

) = 0.1 𝑁. 
𝑠   

= 

0.1𝑘𝑔 
,  10 𝑝 = 

1𝑘𝑔 
𝐶𝑚.𝑠 𝑚2 

𝑚.𝑠 𝑚.𝑠 
 

5- Kinematic Viscosity (𝒱): It’s the ratio of viscosity to the mass density. 

𝒱 = 
𝜇 

= 1 
𝑚2 

= 100 
𝐶𝑚2

 

 
(𝑠𝑡𝑜𝑐𝑘𝑒). 

𝜌 𝑠 𝑠 
 

6- Density (𝛒): is the mass per unit volume 𝝆 = 
𝒎𝒂𝒔𝒔

 
𝒗𝒐𝒍𝒖𝒎𝒆 

= 
𝒌𝒈 

𝒎𝟑 

For example 𝜌𝑤𝑎𝑡𝑒𝑟 = 1000 
𝑘𝑔

 
𝑚3 

 

7- Specific weight (𝜸): (unit gravity force) the force per unit volume. It change 

with location. 𝜸 
 
𝒘𝒂𝒕𝒆𝒓 = 𝝆 

 
𝒘𝒂𝒕𝒆𝒓 

. 𝒈 = 𝟏𝟎𝟎𝟎 ∗ 𝟗. 𝟖𝟏 = 𝟗𝟖𝟏𝟎 
𝑵

 
𝒎𝟑 

 

8- Specific gravity (S): (relative density) 𝑺 = 
𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄 𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒔𝒖𝒃𝒔𝒕𝒂𝒏𝒄𝒆

 
𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄 𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒘𝒂𝒕𝒆𝒓 

= 
𝜸𝒔 

𝜸𝒘 

9- Pressure (P):the normal force pushing against a plane area devised by area 
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𝑃 = 
𝐹𝑜𝑟𝑐𝑒 

= 
𝐹 

= 
𝑁 𝑝𝑎𝑠𝑐𝑎𝑙 (𝑝𝑎 𝑜𝑟 𝑘𝑝𝑎) 𝑎𝑛𝑑 

𝑘𝑔
 𝑏𝑎𝑟 . 

𝐴𝑟𝑒𝑎 𝐴 𝑚2 𝐶𝑚2 

10- Vapor pressure: The vapor molecules exert a partial pressure in the space 

known as vapor pressure. 

11- Perfect gas: it is substance that satisfied the perfect das law 𝑷𝑽 = 𝒎𝑹𝑻. 

Newtn law of viscosity: 

𝐹 𝖺 
𝐴 𝑈 

𝑡 

A: is the area of the moving plate (m2). 

U: steady velocity of the moving plate (m/s). 

t: the distance between the plates (m). 

𝐴 𝑈 
𝐹 = 𝜇 

𝑡
 

𝐹 𝑈 
∵ 𝑟 = 

𝐴 
= 𝜇 

𝑡
 

𝑈 

𝑡 
𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑔𝑙𝑒𝑟 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 

𝑑𝑢 
𝑎𝑛𝑔𝑙𝑒𝑟 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑  

 

𝑑𝑦 

𝑟 = 𝜇 
𝑑𝑢

 
𝑑𝑦 

 

Newtonian fluid 

Moving plate F 

t 
u 

u 

U 

y 

Fixed plate 
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Q1.5 A Newtonian fluid is n clearance between shaft and concentric sleeve. When a 

force of 500N is applied to the sleeve parallel to the shaft the sleeve attained a speed 

1m/s. If a 1500N force is applied what speed will the sleeve attain? The temperature 

of the sleeve remain constant. 

F1=500N 

U1=1 m/s 

𝐴 𝑈 
𝐹2 = 𝜇 

 
500 = 𝜇 

𝑡 

𝐴 1 
 

 

𝑡 
 

𝜇 = 
500𝑡 

 
 

𝐴 

T= constant →μ = constant. 
 

𝐴 𝑈 500𝑡 𝐴 𝑈 
𝐹2 = 𝜇 

𝑡 
→ 1500 = 

𝐴 𝑡
 

U=3m/s. 
 

Specific volume (v ): is the reciprocal of density. 𝑣 = 
1 

= 
𝑚3 

 
  

s 

 

Surface tension: 

𝑠 𝜌 𝑘𝑔 

 

𝑊 = 𝑚𝑔 = 𝜌 𝑉 𝑔 = 𝜌 𝑔 (𝜋𝑅2ℎ) 

Equating the vertical components of the surface tension 

force to the weight gives: 

𝑊 = 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒 → 𝜌 𝑔 (𝜋𝑅2ℎ) = 2𝑟𝑹𝝈𝒔 𝒄𝒐𝒔(𝝓) 

⸫ 𝐶𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑟𝑖𝑠𝑒 ℎ = 
2𝝈𝒔 𝒄𝒐𝒔(𝝓)

 
𝜌 𝑔 𝑅 

Pressure at droplet 𝑃 = 
2 𝜎 

= 
𝑁

 
𝑟 𝑚2 

14- Bulk modules of elasticity (K): 

 
Sleeve 

 

Shaft 
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𝑑𝑃 
𝐾 = − 

𝑑𝑉
 

𝑉 

𝑁 
= 

𝑚2 

∆𝑃 
𝑜𝑟 𝐾 = − ∆𝑉 

𝑉 

= − 
𝑃2 − 𝑃1 

𝑉2 − 𝑉1 

𝑉1 

K: is the compressive stress per unit volume. 
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Lecture Two Solved Problem 
Q1- 

Q2- 

 

Q2- 
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Q3- 

Q4- 
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Q5- 

Q6- 

 

 

 

 

 

 

 

 
Q7- 

Q5 
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Q9- 



Lecture Two Solved Problem    14  
 

Q10- 

Q11- 
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Q12- 

Q13- 
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Q14- 

Q15- 
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Q16- 

Q17- 

 

Q18- 
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Q19- 

Q20- 
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Lecture Three Fluid Static 
 

Fluid Static 

Pressure: is defined as a normal force exerted by a fluid per unit area. It has the 

unit of Newton per square meter (N/m2), which is called a Pascal (Pa). 

 

 
The actual pressure at a given position is called the absolute pressure, and it is 

measured relative to absolute vacuum (i.e., absolute zero pressure). Most pressure- 

measuring devices, however, are calibrated to read zero in the atmosphere Figure 

(1). 

 

 

Figure (1): Bourdon pressure gage. 

 

And so they indicate the difference between the absolute pressure and the local 

atmospheric pressure. This difference is called the gage pressure. Pressures below 

atmospheric pressure are called vacuum pressures and are measured by vacuum 

gages that indicate the difference between the atmospheric pressure and the 
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absolute pressure. Absolute, gage, and vacuum pressures are all positive quantities 

and are related to each other by 

Pabs =Pgage+Patm Eqn. (1) 

Pabs = Patm -Pvac Eqn. (2) 
 

 
 

Pressure at a Point: 

Pressure is the compressive force per unit area, and it gives the impression of being 

a vector. However, pressure at any point in a fluid is the same in all directions. 

That is, it has magnitude but not a specific direction, and thus it is a scalar quantity. 

This can be demonstrated by considering a small wedge-shaped fluid element of unit 

length (into the page) in equilibrium, as shown in Figure (3). The mean pressures at 

the three surfaces are P1, P2, and P3, and the force acting on a surface is the product 

of mean pressure and the surface area. From Newton’s second law, a force balance 

in the x- and z-directions gives 

Eqn. (3) 

 

Eqn. (4) 
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Figure (3): Forces acting on a wedge-shaped fluid element in equilibrium. 

Where 𝛒 is the density and W = mg = 𝛒g .Δx. Δz /2 is the weight of the fluid 

element. Noting that the wedge is a right triangle, we have Δx = l cos θ and Δz = l 

sin θ. Substituting these geometric relations and dividing Eq. 3 by Δz and Eq. 4 by 

Δx gives: 

Eqn. (5) 

Eqn. (6) 

 

 
The last term in Eqn. (6) drops out as Δz → 0 and the wedge becomes infinitesimal, 

and thus the fluid element shrinks to a point. Then combining the results of these 

two relations gives: 

P1= P2= P3= 0 Eqn. (7) 

 
At a particular point, P has the following properties: 

 

1. It is same in all directions. 
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2. It is ⊥ to any surface of the object. 

 

Variation of Pressure with Depth: 

It will come as no surprise to you that pressure in a fluid at rest does not change in 

the horizontal direction. This can be shown easily by considering a thin horizontal 

layer of fluid and doing a force balance in any horizontal direction. However, this is 

not the case in the vertical direction in a gravity field. Pressure in a fluid increases 

with depth because more fluid rests on deeper layers, and the effect of this “extra 

weight” on a deeper layer is balanced by an increase in pressure figure (4). 

 

 

Figure (4): The pressure of a fluid at rest increases with depth (as a result of added 

weight). 

To obtain a relation for the variation of pressure with depth, consider a rectangular 

fluid element of height Δz, length Δx, and unit depth (into the page) in equilibrium, 

as shown in Figure (5). Assuming the density of the fluid r to be constant, a force 

balance in the vertical z-direction gives: 

∑ 𝐹𝑧 = 𝑚𝑎𝑧 = 0:   𝑃2 ∆𝑥 − 𝑃1 ∆𝑥 − 𝜌 𝑔 𝛥𝑥 𝛥𝑧 = 0 Eqn. (8). 

Where W = mg = g Δx Δz is the weight of the fluid element. Dividing by Δx and 

rearranging gives: 
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ΔP = P2 - P1 = 𝛒g Δz = 𝜸s .Δz Eqn. (9). 
 

Figure (5): Free-body diagram of a rectangular fluid element in equilibrium 

 

Where 𝜸s = 𝛒g is the specific weight of the fluid. Thus, we conclude that the pressure 

difference between two points in a constant density fluid is proportional to the 

vertical distance Δz between the points and the density 𝛒 of the fluid. 

The gravitational acceleration g varies from 9.807 m/s2 at sea level to 9.764 m/s2 

at an elevation of 14000 m where large passenger planes cruise. This is a change of 

just 0.4 percent in this extreme case. Therefore, g can be assumed to be constant 

with negligible error. For fluids whose density changes significantly with elevation, 

a relation for the variation of pressure with elevation can be obtained by dividing 

Eqn. (8) by Δx Δz, and taking the limit as Δz → 0. It gives: 

𝜕𝑝 = −𝜌𝑔 Eqn. (10) 
𝜕𝑧 

 

The negative sign is due to our taking the positive z direction to be upward so that 

dP is negative when dz is positive since pressure decreases in an upward direction. 

When the variation of density with elevation is known the pressure difference 

between points 1 and 2 can be determined by integration to be: 
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∆𝑝 = 𝑃2 − 𝑃1 = − ∫ 𝜌𝑔𝑑𝑧 Eqn. (11) 
 

If we take point 1 to be at the free surface of a liquid open to the atmosphere figure 

(6), where the pressure is the atmospheric pressure Patm, then the pressure at a depth 

h from the free surface becomes: 

P=Patm + 𝛒gh Eqn. (12) 
 

 

Figure (6): Pressure in a liquid at rest increases linearly with distance from the free 

surface. 

 

Figure (7): The pressure is the same at all points on a horizontal plane in a given 

fluid regardless of geometry, provided that the points are interconnected by the same 

fluid. 
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Pascal’s Law: Named for French scientist Blaise Pascal 

• A change in the pressure applied to a fluid is transmitted undiminished to 

every point of the fluid and to the walls of the container 

• Car lift in a service station. See figure. A large output force can be applied by 

means of a small input force. Volume of liquid pushed down on left must 

equal volume pushed up on right. 

Example (1): Circular cross section system. On left r1 = 5 cm = 0.05 m. On right 

r2 = 15 cm = 0.15 m. Car’s weight mg = 13,300 N. 

Newtonians 2nd Law on right: ∑Fy = 0 = F2 – mg. Or F2 = 13,300 N. Calculate 

minimum F1 to lift the car & pressure P in the system. 
 

P1 = P2 

F1 = 
F2 

A1 A2 

 

F1 = (A1/A2)F2 = 1480 N 

P = (F1/A1) = 1.88  105 Pa 
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Measurement of pressure: 

Atmospheric pressure measurements: 
 

Pressure is measured using the two principles discussed above, that P = 𝛒gh, and 

Pascal’s Principle. If a fluid, like mercury or water is put in a container which is 

open to the atmosphere at one end and closed at the other, with the closed end having 

zero pressure (it is a vacuum), then the following situation occurs. 

 

 

E. Torricelli (1608) 

Eqn. (13) 
 

 

 
 

The pressure at any height is equal, so the pressure of the atmosphere, just equals 

the pressure of the liquid or 𝛒gh. For different liquids with different densities, the 

height of the column at sea level will be different. For mercury it is 760 mm. For 

water, it is 10.3 m. 

 

Where y = z = h= point elevation started from sea level. 
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1 2 

 

 
 

The Manometer: 

U-Tube Manometer: A manometer mainly consists of a glass or plastic U-tube 

containing one or more fluids such as mercury, water, alcohol, or oil. To keep the 

size of the manometer to a manageable level, heavy fluids such as mercury are used 

if large pressure differences are anticipated. 

Consider the manometer shown in Figure (8) that is used to measure the pressure in 

the tank. 

 

 

Figure (8) : U- Tube Manometer 
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Since the gravitational effects of gases are negligible, the pressure anywhere in the 

tank and at position 1 has the same value. Furthermore, since pressure in a fluid does 

not vary in the horizontal direction within a fluid, the pressure at point 2 is the same 

as the pressure at point 1, P2 = P1. The differential fluid column of height h is in 

static equilibrium, and it is open to the atmosphere. Then the pressure at point A is 

determined directly from Equation (14): 

  Eqn. (14) 

 
Example (2): 

 

 

Figure (9): 

9 
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Bourdon gage: named after the French engineer and inventor Eugene Bourdon 

(1808–1884), which consists of a hollow metal tube bent like a hook whose end is 

closed and connected to a dial indicator needle figure (10). When the tube is open to 

the atmosphere, the tube is undeflected, and the needle on the dial at this state is 

calibrated to read zero (gage pressure). When the fluid inside the tube is pressurized, 

the tube stretches and moves the needle in proportion to the pressure applied. 

 

Figure (10): Various types of Bourdon tubes used to measure pressure. 
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Many engineering problems and some manometers involve multiple immiscible 

fluids of different densities stacked on top of each other. Such systems can be 

analyzed easily by remembering that (1) the pressure change across a fluid column 

of height h is ΔP = 𝛒gh, (2) pressure increases downward in a given fluid and 

decreases upward (i.e., Pbottom > Ptop), and (3) two points at the same elevation in a 

continuous fluid at rest are at the same pressure. 

The last principle, which is a result of Pascal’s law, allows us to “jump” from one 

fluid column to the next in manometers without worrying about pressure change as 

long as we don’t jump over a different fluid, and the fluid is at rest. Then the pressure 

at any point can be determined by starting with a point of known pressure and adding 

or subtracting 𝛒gh terms as we advance toward the point of interest. For example, 

the pressure at the bottom of the tank in Figure (11) can be determined by starting at 

the free surface where the pressure is Patm, moving downward until we reach point 1 

at the bottom, and setting the result equal to P1. It gives 

Patm+ 𝛒1gh1+𝛒2gh2+𝛒3gh3=P1 
 

Figure (11): 
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HYDROSTATIC FORCES ON SUBMERGED PLANE SURFACES: 

A plate exposed to a liquid, such as a gate valve in a dam, the wall of a liquid storage 

tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its 

surface Figure (12). 

 

Figure (12): Hoover Dome. 

On a plane surface, the hydrostatic forces form a system of parallel forces, and we 

often need to determine the magnitude of the force and its point of application, which 

is called the center of pressure. In most cases, the other side of the plate is open to 

the atmosphere (such as the dry side of a gate), and thus atmospheric pressure acts 

on both sides of the plate, yielding a zero resultant. In such cases, it is convenient to 

subtract atmospheric pressure and work with the gage pressure only Figure (13). For 

example, Pgage = 𝛒gh at the bottom of the lake. 

 

Figure (13) 
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Consider the top surface of a flat plate of arbitrary shape completely submerged 

in a liquid, as shown in Figure (14) together with its top view. 

 

Figure (14): Hydrostatic force on an inclined plane surface completely submerged in a liquid. 

 
 

The plane of this surface (normal to the page) intersects the horizontal free surface 

with an angle θ, and we take the line of intersection to be the x-axis. The absolute 

pressure above the liquid is P0, which is the local atmospheric pressure Patm if the 

liquid is open to the atmosphere (but P0 may be different than Patm if the space 

above the liquid is evacuated or pressurized). Then the absolute pressure at any point 

on the plate is 

P=Po + 𝛒gh=Po+𝛒g y.sinθ 

Where h is the vertical distance of the point from the free surface and y is the distance 

of the point from the x-axis from point O in Figure (14). The resultant hydrostatic 

force FR acting on the surface is determined by integrating the force (P dA) acting 

on a differential area dA over the entire surface area, 

 
𝐹𝑅 = ∫ 𝑃𝑑𝐴 = ∫   (𝑃𝑜 + 𝜌𝑔𝑦 sin 𝜃)𝑑𝐴 = 𝑃𝑜𝐴 + 𝜌𝑔 𝑠𝑖𝑛 𝜃 ∫   𝑦𝑑𝐴 

𝐴 𝐴 𝐴 

 

But the first moment of area∫𝐴 

center) of the surface by 

𝑦𝑑𝐴 is related to the y-coordinate of the centroid (or 
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𝐴 

1 
𝑦𝑐 = ∫ 𝑦𝑑𝐴 

𝐴 

 

Substituting: 

 

𝐹𝑅 = (𝑃𝑜 + 𝜌𝑔𝑦𝑐 𝑠𝑖𝑛 𝜃)𝐴 = (𝑃𝑜 + 𝜌𝑔ℎ𝑐)𝐴 = 𝑃𝑐𝐴 = 𝑃𝑎𝑣𝑒𝐴 

Where PC = P0 + 𝛒ghC is the pressure at the centroid of the surface, which is 

equivalent to the average pressure on the surface, and hC = yC sin u is the vertical 

distance of the centroid from the free surface of the liquid Figure (15). Thus we 

conclude that: 

 

Figure (15): The pressure at the centroid of a surface is equivalent to the average 

pressure on the surface. 

The magnitude of the resultant force acting on a plane surface of a completely 

submerged plate in a homogeneous (constant density) fluid is equal to the product 

of the pressure PC at the centroid of the surface and the area A of the surface (Figure 

(16). 

The pressure P0 is usually atmospheric pressure, which can be ignored in most cases 

since it acts on both sides of the plate. When this is not the case, a practical way of 

accounting for the contribution of P0 to the resultant force is simply to add an 
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equivalent depth hequiv = P0 /𝛒g to hC ; that is, to assume the presence of an additional 

liquid layer of thickness hequiv on top of the liquid with absolute vacuum above. 

 

Figure (16): The resultant force acting on a plane surface is equal to the product of the pressure at the 

centroid of the surface and the surface area, and its line of action passes through the center of pressure. 

Next we need to determine the line of action of the resultant force FR. Two parallel 

force systems are equivalent if they have the same magnitude and the same moment 

about any point. The line of action of the resultant hydrostatic force, in general, does 

not pass through the centroid of the surface— it lies underneath where the pressure 

is higher. The point of intersection of the line of action of the resultant force and the 

surface is the center of pressure. The vertical location of the line of action is 

determined by equating the moment of the resultant force to the moment of the 

distributed pressure force about the x-axis. It gives 

 

 
Or 
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Where yP is the distance of the center of pressure from the x-axis point O in Figure 

(16), and 

𝐼𝑋𝑋,𝑜 = ∫ 𝑦2𝑑𝐴 
𝐴 

 

is the second moment of area (also called the area moment of inertia) about the x- 

axis. The second moments of area are widely available for common shapes in 

engineering handbooks, but they are usually given about the axes passing through 

the centroid of the area. Fortunately, the second moments of area about two parallel 

axes are related to each other by the parallel axis theorem, which in this case is 

expressed as 

𝐼𝑋𝑋,𝑜 = 𝐼𝑋𝑋,𝑐 + 𝑦𝑐
2𝐴 

where Ixx,C is the second moment of area about the x-axis passing through the 

centroid of the area and yC (the y-coordinate of the centroid) is the distance between 

the two parallel axes. Substituting the FR relation from Eq. 3–19 and the Ixx,O relation 

from Eq. 3–21 into Eq. 3–20 and solving for yP gives 

 

For P0 = 0, which is usually the case when the atmospheric pressure is ignored, it 

simplifies to 
 

 

Knowing yP, the vertical distance of the center of pressure from the free surface is 

determined from hP = yP sin θ. The Ixx,C values for some common areas are given in 

Figure (17). For these and other areas that possess symmetry about the y-axis, the 
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center of pressure lies on the y-axis directly below the centroid. The location of the 

center of pressure in such cases is simply the point on the surface of the vertical 

plane of symmetry at a distance hP from the free surface. 

 

Figure (17): The centroid and the centroidal moments of inertia for some common geometries. 

 

 

Whose height is the linearly varying pressure, as shown in Figure (18). This virtual 

pressure prism has an interesting physical interpretation: its volume is equal to the 

magnitude of the resultant hydrostatic force acting on the plate since V = ∫P dA, and 

the line of action of this force passes through the centroid of this homogeneous 

prism. The projection of the centroid on the plate is the pressure center. Therefore, 

with the concept of pressure prism, the problem of describing the resultant 

hydrostatic force on a plane surface reduces to finding the volume and the two 

coordinates of the centroid of this pressure prism. 
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Special Case: Submerged Rectangular Plate 

Consider a completely submerged rectangular flat plate of height b and width a tilted 

at an angle u from the horizontal and whose top edge is horizontal and is at a distance 

s from the free surface along the plane of the plate, as shown in Figure (19). 

 

 
Figure (19): Hydrostatic force acting on the top surface of a submerged rectangular plate for 

tilted, vertical, and horizontal cases. 

The resultant hydrostatic force on the upper surface is equal to the average pressure, 

which is the pressure at the midpoint of the surface, times the surface area A. That 

is. 

 

 

 

 

 

 

 

 

 
 

Figure (18): 
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For a completely submerged vertical plate (θ = 90°) whose top edge is horizontal, 

the hydrostatic force can be obtained by setting sin θ =1 Figure (19-b) 

 

 
When the effect of P0 is ignored since it acts on both sides of the plate, the hydrostatic 

force on a vertical rectangular surface of height b whose top edge is horizontal and 

at the free surface is FR = θgab2/2 acting at a distance of 2b/3 from the free surface 

directly beneath the centroid of the plate. The pressure distribution on a submerged 

horizontal surface is uniform, and its magnitude is P = P0 + 𝛒gh, where h is the 

distance of the surface from the free surface. Therefore, the hydrostatic force acting 

on a horizontal rectangular surface is 

 

 
and it acts through the midpoint of the plate Figure (19-c). 
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HYDROSTATIC FORCES ON SUBMERGED CURVED SURFACES: 

 

For a submerged curved surface, the determination of the resultant hydrostatic force 

is more involved since it typically requires the integration of the pressure forces that 

change direction along the curved surface. The concept of the pressure prism in this 

case is not much help either because of the complicated shapes involved. The easiest 

way to determine the resultant hydrostatic force FR acting on a two-dimensional 

curved surface is to determine the horizontal and vertical components FH and FV 

separately. This is done by considering the free-body diagram of the liquid block 

enclosed by the curved surface and the two plane surfaces (one horizontal and one 

vertical) passing through the two ends of the curved surface, as shown in Figure (20). 

Note that the vertical surface of the liquid block considered is simply the projection 

of the curved surface on a vertical plane, and the horizontal surface is the projection 

of the curved surface on a horizontal plane. The resultant force acting on the 

 

 
Figure (20): Determination of the hydrostatic force acting on a submerged curved surface. 

curved solid surface is then equal and opposite to the force acting on the curved 

liquid surface (Newton’s third law). The force acting on the imaginary horizontal or 

vertical plane surface and its line of action can be determined. The weight of the 

enclosed liquid block of volume V is simply W = 𝛒gV, and it acts downward through 
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the centroid of this volume. Noting that the fluid block is in static equilibrium, the 

force balances in the horizontal and vertical 

directions give 
 
 

 
Where the summation Fy + W is a vector addition (i.e., add magnitudes if both act in 

the same direction and subtract if they act in opposite directions). Thus, we conclude 

that 

1. The horizontal component of the hydrostatic force acting on a curved surface is 

equal (in both magnitude and the line of action) to the hydrostatic force acting on 

the vertical projection of the curved surface. 

2. The vertical component of the hydrostatic force acting on a curved surface is equal 

to the hydrostatic force acting on the horizontal projection of the curved surface, plus 

(minus, if acting in the opposite direction) the weight of the fluid block. 

The magnitude of the resultant hydrostatic force acting on the curved surface is 
 
 

𝐹𝑅 = √𝐹𝐻 
2 + 𝐹𝑣

2
 

 

and the tangent of the angle it makes with the horizontal is tan 𝖺 =FV /FH. The exact 

location of the line of action of the resultant force (e.g., its distance from one of the 

end points of the curved surface) can be determined by taking a moment about an 

appropriate point. These discussions are valid for all curved surfaces regardless of 

whether they are above or below the liquid. Note that in the case of a curved surface 

above a liquid, the weight of the liquid is subtracted from the vertical component of 

the hydrostatic force since they act in opposite directions Figure (21). 
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Figure (21): When a curved surface is above the liquid, the weight of the liquid and the vertical 

component of the hydrostatic force act in the opposite directions. 

When the curved surface is a circular arc (full circle or any part of it), the resultant 

hydrostatic force acting on the surface always passes through the center of the circle. 

This is because the pressure forces are normal to the surface, and all lines normal to 

the surface of a circle pass through the center of the circle. Thus, the pressure forces 

form a concurrent force system at the center, which can be reduced to a single 

equivalent force at that point Figure (22). 

 

 
Figure (22): The hydrostatic force acting on a circular surface always passes through the center of the 

circle since the pressure forces are normal to the surface and they all pass through the center. 
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FIGURE 3–36 Schematic for Example 3–9 and the free-body diagram of the fluid 

underneath the cylinder. 
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BUOYANCY AND STABILITY 

It is a common experience that an object feels lighter and weighs less in a liquid than 

it does in air. This can be demonstrated easily by weighing a heavy object in water 

by a waterproof spring scale. Also, objects made of wood or other light materials 

float on water. These and other observations suggest that a fluid exerts an upward 

force on a body immersed in it. This force that tends to lift the body is called the 

buoyant force and is denoted by FB. 

The buoyant force is caused by the increase of pressure in a fluid with depth. 

Consider, for example, a flat plate of thickness h submerged in a liquid of density 𝛒f 

parallel to the free surface, as shown in Figure (22). The area of the top (and also 

bottom) surface of the plate is A, and its distance to the free surface is s. The 

pressures at the top and bottom surfaces of the plate are 𝛒f gs and 𝛒f g(s+h), 

respectively. Then the hydrostatic force Ftop = 𝛒f gsA acts downward on the top 

surface, and the larger force Fbottom = 𝛒f g(s+h)A acts upward on the bottom surface 

of the plate. The difference between these two forces is a net upward force, which is 

the buoyant force. 

FB=Fbottom-Ftop= 𝛒f g(s+h)A- 𝛒f gsA= 𝛒f ghA= 𝛒fgV 
 

 
 

Figure (22). A flat plate of uniform thickness h submerged in a liquid parallel to the free surface. 
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where V =hA is the volume of the plate. But the relation 𝛒fgV is simply the weight 

of the liquid whose volume is equal to the volume of the plate. Thus, we conclude 

that the buoyant force acting on the plate is equal to the weight of the liquid 

displaced by the plate. Note that the buoyant force is independent of the distance of 

the body from the free surface. It is also independent of the density of the solid body. 

The relation in Eq. 3–32 is developed for a simple geometry, but it is valid for 

anybody regardless of its shape. This can be shown mathematically by a force 

balance, or simply by this argument: Consider an arbitrarily shaped solid body 

submerged in a fluid at rest and compare it to a body of fluid of the same shape 

indicated by dotted lines at the same distance from the free surface Figure (23). 

 

 

Figure (23). 

 

The buoyant forces acting on these two bodies are the same since the pressure 

distributions, which depend only on depth, are the same at the boundaries of both. 

The imaginary fluid body is in static equilibrium, and thus the net force and net 

moment acting on it are zero. Therefore, the upward buoyant force must be equal to 

the weight of the imaginary fluid body whose volume is equal to the volume of the 

solid body. Further, the weight and the buoyant force must have the same line of 
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action to have a zero moment. This is known as Archimedes’ principle, after the 

Greek mathematician Archimedes (287–212 BC), and is expressed as: 

The buoyant force acting on a body immersed in a fluid is equal to the weight of 

the fluid displaced by the body, and it acts upward through the centroid of the 

displaced volume. 

For floating bodies, the weight of the entire body must be equal to the buoyant force, 

which is the weight of the fluid whose volume is equal to the volume of the 

submerged portion of the floating body. That is, 

FB=W→ 𝛒f gVs= 𝛒ave,body g Vtotal→Vsub/Vtotal= 𝛒ave,body/ 𝛒f 

Therefore, the submerged volume fraction of a floating body is equal to the ratio of 

the average density of the body to the density of the fluid. Note that when the density 

ratio is equal to or greater than one, the floating body becomes completely 

submerged. 

It follows from these discussions that a body immersed in a fluid (1) remains at 

rest at any point in the fluid when its density is equal to the density of the fluid, (2) 

sinks to the bottom when its density is greater than the density of the fluid, and (3) 

rises to the surface of the fluid and floats when the density of the body is less than 

the density of the fluid (Fig. 3–39). 
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Fig 3-39 

The buoyant force is proportional to the density of the fluid, and thus we might think 

that the buoyant force exerted by gases such as air is negligible. This is certainly the 

case in general, but there are significant exceptions. For example, the volume of a 

person is about 0.1 m3, and taking the density of air to be 1.2 kg/m3, the buoyant 

force exerted by air on the person is 
 

 

The weight of an 80-kg person is 80 × 9.81 = 788 N. Therefore, ignoring the 

buoyancy in this case results in an error in weight of just 0.15 percent, which is 

negligible. But the buoyancy effects in gases dominate some important natural 

phenomena such as the rise of warm air in a cooler environment and thus the onset 

of natural convection currents, the rise of hot-air or helium balloons, and air 

movements in the atmosphere. A helium balloon, for example, rises as a result of the 

buoyancy effect until it reaches an altitude where the density of air (which decreases 

with altitude) equals the density of helium in the balloon—assuming the balloon 

does not burst by then, and ignoring the weight of the balloon’s skin. 

Archimedes’ principle is also used in modern geology by considering the 

continents to be floating on a sea of magma. 
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Stability of Immersed and Floating Bodies 

 

An important application of the buoyancy concept is the assessment of the stability 

of immersed and floating bodies with no external attachments. This topic is of great 

importance in the design of ships and submarines (Fig. 3–42). Here we provide some 

general qualitative discussions on vertical and rotational stability. 

 

 

We use the “ball on the floor” analogy to explain the fundamental concepts of 

stability and instability. Shown in Fig. 3–43 are three balls at rest on the floor. Case 

(a) is stable since any small disturbance (someone moves the ball to the right or 

left) generates a restoring force (due to gravity) that returns it to its initial position. 

Case (b) is neutrally stable because if someone moves the ball to the right or left, 

it would stay put at its new location. It has no tendency to move back to its original 

location, nor does it continue to move away. Case (c) is a situation in which the 

ball may be at rest at the moment, but any disturbance, even an infinitesimal one, 

causes the ball to roll off the hill—it does not return to its original position; rather 

it diverges from it. This situation is unstable. What about a case where the ball is 

on an inclined floor? It is not really appropriate to discuss stability for this case since 

the ball is not in a state of equilibrium. In other words, it cannot be at rest and would 

roll down the hill even without any disturbance. 
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For an immersed or floating body in static equilibrium, the weight and the buoyant 

force acting on the body balance each other, and such bodies are inherently stable in 

the vertical direction. If an immersed neutrally buoyant body is raised or lowered to 

a different depth, the body will remain in equilibrium at that location. If a floating 

body is raised or lowered somewhat by a vertical force, the body will return to its 

original position as soon as the external effect is removed. Therefore, a floating body 

possesses vertical stability, while an immersed neutrally buoyant body is neutrally 

stable since it does not return to its original position after a disturbance. The 

rotational stability of an immersed body depends on the relative locations of the 

center of gravity G of the body and the center of buoyancy B, which is the centroid 

of the displaced volume. An immersed body is stable if the body is bottom-heavy 

and thus point G is directly below point B (Fig. 3–44). 

 

 

A rotational disturbance of the body in such cases produces a restoring moment to 

return the body to its original stable position. Thus, a stable design for a submarine 

calls for the engines and the cabins for the crew to be located at the lower half in 

order to shift the weight to the bottom as much as possible. Hot-air or helium 
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balloons (which can be viewed as being immersed in air) are also stable since the 

cage that carries the load is at the bottom. An immersed body whose center of gravity 

G is directly above point B is unstable, and any disturbance will cause this body to 

turn upside down. A body for which G and B coincide is neutrally stable. This is the 

case for bodies whose density is constant throughout. For such bodies, there is no 

tendency to overturn or right themselves. 

What about a case where the center of gravity is not vertically aligned with the center 

of buoyancy (Fig. 3–45)? It is not really appropriate to discuss stability for this case 

since the body is not in a state of equilibrium. 

 

 

 

In other words, it cannot be at rest and would rotate toward its stable state even 

without any disturbance. The restoring moment in the case shown in Fig. 3–45 is 

counterclockwise and causes the body to rotate counterclockwise so as to align point 

G vertically with point B. Note that there may be some oscillation, but eventually 

the body settles down at its stable equilibrium state [case (a) of Fig. 3–44]. The 

stability of the body of Fig. 3–45 is analogous to that of the ball on an inclined floor. 

Can you predict what would happen if the weight in the body of Fig. 3–45 were on 

the opposite side of the body? The rotational stability criteria are similar for floating 

bodies. Again, if the floating body is bottom-heavy and thus the center of gravity G 

is directly below the center of buoyancy B, the body is always stable. But unlike 
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GM 

immersed bodies, a floating body may still be stable when G is directly above B (Fig. 

3–46). 

 

 

This is because the centroid of the displaced volume shifts to the side to a point B+ 

during a rotational disturbance while the center of gravity G of the body remains 

unchanged. If point B+ is sufficiently far, these two forces create a restoring moment 

and return the body to the original position. A measure of stability for floating bodies 

is the metacentric height (GM ), which is the distance between the center of gravity 

G and the metacenter M—the intersection point of the lines of action of the 

buoyant force through the body before and after rotation. The metacenter may be 

considered to be a fixed point for most hull shapes for small rolling angles up to 

about 20°. A floating body is stable if point M is above point G, and thus GM is 

positive, and unstable if point M is below point G, and thus GM is negative. In the 

latter case, the weight and the buoyant force acting on the tilted body generate an 

overturning moment instead of a restoring moment, 

causing the body to capsize. The length of the metacentric height GM above G is a 

measure of the stability: the larger it is, the more stable is the floating body. 

As already discussed, a boat can tilt to some maximum angle without capsizing, but 

beyond that angle it overturns (and sinks). We make a final analogy between the 

stability of floating objects and the stability of a ball rolling along the floor. Namely, 

imagine the ball in a trough between two hills (Fig. 3–47). The ball returns to its 
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stable equilibrium position after being perturbed—up to a limit. If the perturbation 

amplitude is too great, the ball rolls down the opposite side of the hill and does not 

return to its equilibrium position. This situation is described as stable up to some 

limiting level of disturbance, but unstable beyond. 
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Solved problem 

Q (1): 
 

Q (2): 
 

Q (3): 

 

 

 

 

 
Q (4): 

 

Q (5): 
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Q (26) 
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Buoyancy force 

Q (27) 
 

Q (28) 
 

Q (29) 
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Special Case 1: Fluids at Rest 

For fluids at rest or moving on a straight path at constant velocity, all components 

of acceleration are zero, and the relations in Eqs. 3–43 reduce to 

 

 

Which confirm that, in fluids at rest, the pressure remains constant in any horizontal 

direction (P is independent of x and y) and varies only in the vertical direction as a 

result of gravity and thus P = P(z). These relations are applicable for both 

compressible and incompressible fluids. 

Special Case 2: Free Fall of a Fluid Body 

 

A freely falling body accelerates under the influence of gravity. When the air 

resistance is negligible, the acceleration of the body equals the gravitational 

acceleration, and acceleration in any horizontal direction is zero. Therefore, ax = ay 

= 0 and az = -g. Then the equations of motion for accelerating fluids (Eqs. 3–43) 

reduce to 

 

 

Therefore, in a frame of reference moving with the fluid, it behaves like it is in an 

environment with zero gravity. Also, the gage pressure in a drop of liquid in free fall 

is zero throughout. (Actually, the gage pressure is slightly above zero due to surface 

tension, which holds the drop intact.) When the direction of motion is reversed and 

the fluid is forced to accelerate vertically with az =+g by placing the fluid container 

in an elevator or a space vehicle propelled upward by a rocket engine, the pressure 
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gradient in the z-direction is dP/dz =+2rg. Therefore, the pressure difference across 

a fluid layer now doubles relative to the stationary fluid case (Fig. 3–49). 

 

 

Figure (3-49) The effect of acceleration on the pressure of a liquid during free fall 

and upward acceleration. 

Therefore, in a frame of reference moving with the fluid, it behaves like it is in an 

environment with zero gravity. Also, the gage pressure in a drop of liquid in free fall 

is zero throughout. (Actually, the gage pressure is slightly above zero due to surface 

tension, which holds the drop intact.) When the direction of motion is reversed and 

the fluid is forced to accelerate vertically with az =+g by placing the fluid container 

in an elevator or a space vehicle propelled upward by a rocket engine, the pressure 

gradient in the z-direction is dP/dz =-2rg. Therefore, the pressure difference across 

a fluid layer now doubles relative to the stationary fluid case (Fig. 3–49). 
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Acceleration on a Straight Path 

 

Consider a container partially filled with a liquid. The container is movingon a 

straight path with a constant acceleration. We take the projection of the path of 

motion on the horizontal plane to be the x-axis, and the projection on the vertical 

plane to be the z-axis, as shown in Fig. 3–50. 

 

 

Figure 3-50 Rigid-body motion of a liquid in a linearly accelerating tank. 

 

The x- and zcomponents of acceleration are ax and az. There is no movement in the 

ydirection, and thus the acceleration in that direction is zero, ay = 0. Then the 

equations of motion for accelerating fluids (Eqs. 3–43) reduce to 
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Taking point 1 to be the origin (x = 0, z = 0) where the pressure is P0 and point 2 to 

be any point in the fluid (no subscript), the pressure distribution can be expressed 

as: 

 

 
The vertical rise (or drop) of the free surface at point 2 relative to point 1 can be 

determined by choosing both 1 and 2 on the free surface (so that P1= P2), and 

solving Eq. 3–48 for z2 - z1 (Fig. 3–51), 

 

 
 

 
FIGURE 3–51 Lines of constant pressure (whichare the projections of the surfaces of 

Constant pressure on the xz-plane) in a linearly accelerating liquid, and the vertical rise. 

Where zs is the z-coordinate of the liquid’s free surface. The equation for surfaces 

of constant pressure, called isobars, is obtained from Eq. 3–47 by setting dP = 0 

and replacing z by zisobar, which is the z-coordinate (the vertical distance) of the 

surface as a function of x. It gives 
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Thus we conclude that the isobars (including the free surface) in an incompressible 

 

fluid with constant acceleration in linear motion are parallel surfaces whose slope 

in the xz-plane is 

 

 
Obviously, the free surface of such a fluid is a plane surface, and it is inclined unless 

ax = 0 (the acceleration is in the vertical direction only). Also, the conservation of 

mass together with the assumption of incompressibility (𝛒= constant) requires that 

the volume of the fluid remain constant before and during acceleration. Therefore, 

the rise of fluid level on one side must be balanced by a drop of fluid level on the 

other side. 
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Q (30) 
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3–97E A 2-ft-diameter vertical cylindrical tank open to the atmosphere contains 1- 

ft-high water. The tank is now rotated about the centerline, and the water level drops 

at the center while it rises at the edges. Determine the angular velocity at which the 

bottom of the tank will first be exposed. Also determine the maximum water height 

at this moment. 
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3–105 A 1.2-m-diameter, 3-m-high sealed vertical cylinder is completely filled with 

gasoline whose density is 740 kg/m3. The tank is now rotated about its vertical axis 

at a rate of 70 rpm. Determine (a) the difference between the pressuresat the centers 

of the bottom and top surfaces and (b) the difference between the pressures at the 

center and the edge of the bottom surface. 
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