Toxicology

- Definitions
- Toxicological studies
- Dose-response correlations
- Threshold limit values
- Examples

Hazardous

- Denotes the probability of injury or illness from contact or use
- Industrial Hazards
 - Toxicity
 - Explosivity
 - Ignitability
 - Reactivity

Toxic Substance

- Capacity of a substance to produce injury or illness
- Acute Effects
 - Short term, appear shortly after exposure. Can be from single exposure
- Chronic Effects
 - There is a latency, long period of time before you see effect

Three Types of Toxic Hazardous Materials

Chemical Agents (poisons)

Physical Agents (dusts, fibers, heat, noise, corrosive)

Biological Agents (pathogens)

Definitions

- Toxicology is the quantitative and qualitative study of the adverse effects of toxicants on biological organisms
- Toxicant is a chemical or physical agent that produces adverse effects on biological organisms.

So Toxicology is the study of:

- How toxicants enter the organism
- How toxicants effect the organism
- How toxicants are eliminated from (leave) the organism

All substances are toxic if taken in the wrong quantities

Definition of Toxicology

- the basic science of poisons (old)
- the study of the adverse effects of chemical agents on biological systems (new)

WHAT TOXICOLOGISTS DO

- -involved in the recognition, identification, and quantitation of hazard
- -develops standards and regulations to protect health and the environment
- involved in safety assessment and use of data as basis for regulatory control of hazards
- determines risk associated with use of chemicals

RISK ASSESSMENT

- Hazard identification
- Dose Response Assessment
- Exposure Assessment
- Risk Characterization

INTERRELATED COMPONENTS OF THE RISK ASSESSMENT

- chemical or physical agent
- biological system
- effect or response
- exposure situation

How toxicants enter organism

- Inhalation (mouth or nose to lungs) then into blood(+*)
- Ingestion (mouth to stomach) then into blood(+)
- Injection (cuts, punctures in skin) into blood
- Dermal absorption (through skin) into blood(+*)
 - + Involve membrane transport
 - * Greatest threats in industry

RISK AND SAFETY

- -RISK; the probability that harm will occur under specified conditions
- -<u>SAFETY</u>; the probability that harm will not occur under specified conditions

MAJOR FACTORS THAT INFLUENCE TOXICITY

- -route of administration
- -duration and frequency of exposure
- -dose or concentration

RAPIDITY OF RESPONSE WITH RESPECT TO ROUTE OF EXPOSURE

- -intravenous
- -inhalation
- -intraperitoneally
- -subcutaneous
- -intramuscular

- -intradermal
- -topical

INTERACTION OF CHEMICALS

- Additive
- Synergistic
- Potentiation
- Antagonism (functional, chemical, dispositional, receptor)

DOSE RESPONSE

-ASSUMPTIONS

- -response is due to chemical administered
- -the response is related to the dose
 - -there is a receptor site with which the chemical interacts

Effects of Toxicants

Irreversible Effects

- Carcinogen causes cancer
- Mutagen causes chromosome damage
- Reproductive hazard damage to reproductive system
- Teratogen causes birth defects

Effects of Toxicants

May or may not be reversible

- Dermatotoxic affects skin
- Hemotoxic affects blood
- Hepatotoxic affects liver
- Nephrotoxic affects kidneys
- Neurotoxic affects nervous system
- Pulmonotoxic affects lungs

Definitions

- Pharmacokinetics the absorption, distribution, metabolism and excretion of chemicals through the (human) system.
- Bioaccumulation things such as lead, mercury, PCBs, carbon tetrachloride that build up in organs and have low excretion rate. Low exposure over a long time leads to response

Elimination of toxins

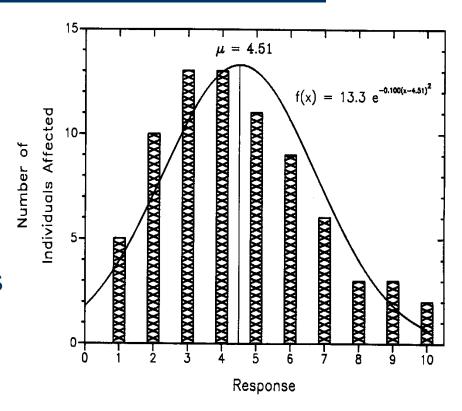
Excretion through kidneys, liver and lungs

 Detoxification is the biotransformation of chemicals into something less harmful

Storage in fatty tissue

Toxicological Studies

Baseline study with no toxicant


 Toxicology study to quantify response to toxicants in specified physical state

Difficulties in Toxicological studies

- Baseline study required (control group)
- Response not necessarily numerical
- Specificity of individual response
 - Allergy or immunity
 - Statistical study required
 - Organism specific response, not applicable to humans
 - Dosage response
 - Response time, latency, acute versus chronic
 - Difficulty in measuring intended variable (lead in liver measured by lead in blood)

Dose versus Response

- Run test on "large" population
- Given same dose (usually in dose/body mass)
- Determine the number or fraction of individuals that have a response

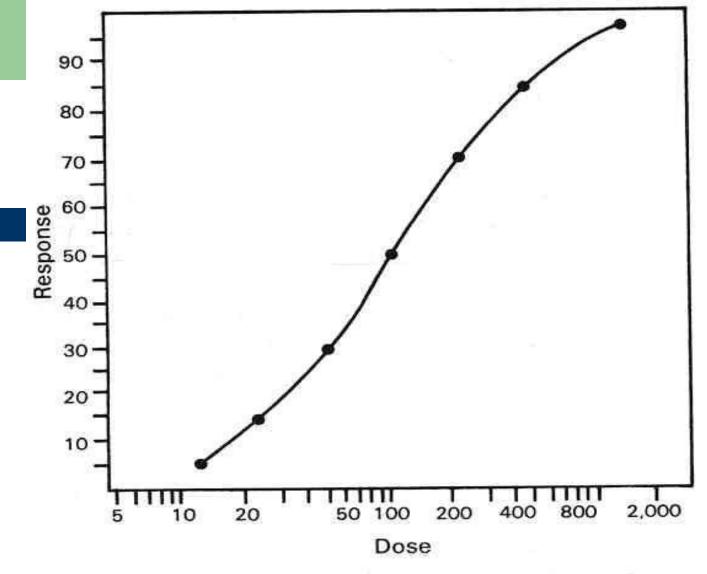


Figure 2-2. Diagram of dose-response relationship. Dosage is most often expressed as mg/kg and plotted on a log scale.

From Casarett & Doull's, Toxicology 3rd Edition, 1986

GENERAL PRINCIPLES OF TOXICOLOGY

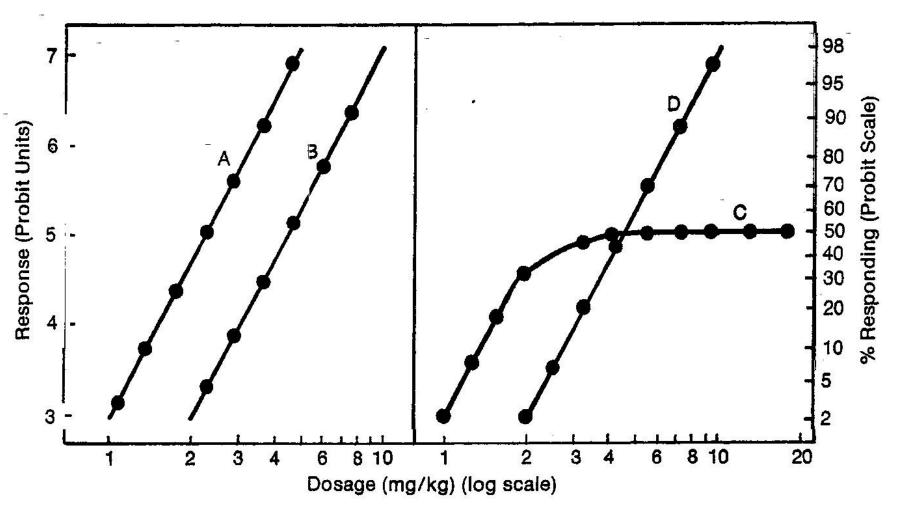


Figure 2-7. Schematic representation of the difference in the dose-response curves for four chemicals (A-D), to illustrate the difference between potency and efficacy (see text).

CASARETT AND DOULL'S TOXICOLOGY, THIRD EDITION

Table 2-1. APPROXIMATE ACUTE LD50'S OF SOME REPRESENTATIVE CHEMICAL AGENTS

AGENT	LD50 (mg/kg)*
Ethyl alcohol	10,000
Sodium chloride	4,000
Ferrous sulfate	1,500
Morphine sulfate	900
Phenobarbital sodium	150
Picrotoxin	5
Strychnine sulfate	2
Nicotine	1
d-Tubocurarine	0.5
Hemicholinium-3	0.2
Tetrodotoxin	0.10
Dioxin (TCDD)	0.001
Botulinum toxin	0.00001

^{*} LD50 is the dosage (mg/kg body weight) causing death in 50 percent of the exposed animals.

From Casarett & Doull's, Toxicology 3rd Edition, 1986