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Lecture 3: Information and quantification General model of communication system 
 

 

Lecture Outlines : 

• Random Variables 

• Discrete Probability Distribution 

• Distribution Functions for Random Variables 

• Expectation of a Discrete Random Variables 

• Variance of a Discrete Random Variable 

• Continuous Random Variables 

• Distribution Functions for Continuous Random Variables 

• Variance of a Discrete Random Variable 

• The Binomial Distribution 

• Normal distribution (Gaussian) 

• Poisson Distributions 
 

 

 

 

 

 

2/24/2019 2 



 

Information Theory / CE23 

Lecture 2 : Distribution function Random Variables 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3 

A continuous random variable takes all values in an interval of numbers 

 electrical current, pressure, temperature, time, voltage, blood pressure, 

the speed of a car, 

the real numbers from 1 to 6. 
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Random Variables: Suppose that to each point of a sample space we assign a number. We then have 

a function defined on the sample space. This function is called a random variable (or stochastic 

variable). It is usually denoted by a capital letter such as X or Y. 

Example 1: X is the variable for the number of heads for a coin tossed three times 

Solution: X = 0, 1, 2, 3 

Discrete random variable has accountable number of possible values 

 Number of sales, Number of calls, People in line, Mistakes per page, dice. 
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Lecture 2 : Distribution function Discrete Probability Distribution 
 

 
 

 
 

Example 2: Suppose that a fair coin is tossed twice. Let X represent the number of heads that can 

come up. Find the probability function corresponding to the random variable X. 

Solution: For each sample point we can associate a number for X as follows: 
 

Sample Point HH HT TH TT 

X 2 1 1 0 

P(HH) = 1/4, P(HT) = 1/4, P(TH) = 1/4, P(TT) = 1/4 

P(X=0) = P(TT) = 1/4 

P(X=1) = P(HT 𝖴 TH) = P(HT)+P(TH)= 1/4+1/4 =1/2 

P(X=2) = P(HH) = 1/4 

The probability function is given by 
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x 0 1 2 

f(x) 1/4 1/2 1/4 

 

The probability distribution of a discrete random variable is a graph, table or formula that 

specifies the probability associated with each possible outcome the random variable can assume. 

• 

• 
𝑓 𝗑 ≥𝟎𝟎 for all values of x 

∑𝗑 𝑓 𝗑 = 𝟏𝟏 𝑓 𝗑 is the probability function 



Example 3: Consider the probability distribution of the number of rewards you will get this 

semester 
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Cumulative Distribution Function (CDF) F(x) - is a function that returns the probability that a 

random variable X is less than or equal to a value. The CDF is also sometimes called the 

distribution function (DF). 
 

 
Requirements for CDFs 

F(x)  P( X  x) 

 

(1) F (x)  0 everywhere the distribution is defined 

(2) F (x) non-decreasing everywhere the distribution is defined. 

(3) F (x)  1 as x  








x f(x) F(x) 

0 0.05 0.05 

1 0.15 0.20 

2 0.20 0.40 

3 0.60 1.00 
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Lecture 2: Distribution function Expectation of a Discrete Random Variables 
 

 
 

 

Example 4: Suppose that a game is to be played with a single die assumed fair. In this game a 

player wins 20$ if a 2 turns up; 40$ if a 4 turns up; loses 30$ if a 6 turns up; while the player 

neither wins nor loses if any other face turns up. Find the expected sum of money to be won. 

Solution: 

f(x1) = f(x2) = f(x3) = f(x4) = f(x5) = f(x6) = 1/6 
 

x 0 +20 0 +40 0 -30 

f(x) 1/6 1/6 1/6 1/6 1/6 1/6 

The expected value, or expectation, is 

𝐸 𝑿𝑿 = 𝟎𝟎 
𝟏𝟏

 
𝟔𝟔 

+ 𝟐𝟐𝟎𝟎 
𝟏𝟏

 
𝟔𝟔 

+ 𝟎𝟎 
𝟏𝟏

 
𝟔𝟔 

+ 𝟒𝟒𝟎𝟎 
𝟏𝟏

 
𝟔𝟔 

+ 𝟎𝟎 
𝟏𝟏

 
𝟔𝟔 

+ −𝟑𝟑𝟎𝟎 
𝟏𝟏

 
𝟔𝟔 

= 𝟓𝟓 

The player should expect to pay 5 $ in order to play the game. 
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Expectation : The expected value, or mean, of a random variable is a measure of central location. 

 

𝐸 𝑿𝑿 =   ∑ 𝗑. 𝑓(𝗑) 



𝑿𝑿 
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Lecture 2: Distribution function Variance of a Discrete Random Variable 
 
 

Variance : A positive quantity that measures the spread of the distribution of the random variable 

about its mean value. Larger values of the variance indicate that the distribution is more spread out. 
𝑛 

𝜎𝟐𝟐  = 𝐸  (𝑿𝑿 − )𝟐𝟐  �(𝗑𝒋𝒋  − )𝟐𝟐𝑓(𝗑𝒋𝒋) = �(𝗑 − )𝟐𝟐𝑓(𝗑) 

𝒋𝒋=𝟏𝟏 𝗑 

The standard deviation is the positive square root of the variance 

𝜎𝟐𝟐 = 𝐸  (𝑿𝑿 − )𝟐𝟐 = ∑(𝗑 − )𝟐𝟐𝑓(𝗑) 
 

Example 5: Find the variance and standard deviation for the game played in previous Example 

Solution: 

𝐸 𝑿𝑿 =   5 
 
 

𝜎𝟐𝟐 = (𝟎𝟎 − 𝟓𝟓)𝟐𝟐 𝟏𝟏
 

+ (𝟐𝟐𝟎𝟎 − 𝟓𝟓)𝟐𝟐 
𝟏𝟏

 + (𝟎𝟎 − 𝟓𝟓)𝟐𝟐 
𝟏𝟏

 +(𝟒𝟒𝟎𝟎 − 𝟓𝟓)𝟐𝟐 
𝟏𝟏

 + (𝟎𝟎 − 𝟓𝟓)𝟐𝟐 𝟏𝟏
 

+ (−𝟑𝟑𝟎𝟎 − 𝟓𝟓)𝟐𝟐 𝟏𝟏
 

= 
𝟐𝟐𝟐𝟐𝟓𝟓𝟎𝟎 

𝑿𝑿 
 

𝜎𝟐𝟐 =  
𝟐𝟐𝟐𝟐𝟓𝟓𝟎𝟎 

𝟔𝟔 

𝟔𝟔 𝟔𝟔 𝟔𝟔 𝟔𝟔 𝟔𝟔 𝟔𝟔 𝟔𝟔 
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𝗑𝒋𝒋 0 +20 0 +40 0 -30 

f(𝗑𝒋𝒋) 1/6 1/6 1/6 1/6 1/6 1/6 
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Some properties of expected values : 

 E(a  x)  a  E(x)  a  
where a is a constant 

 E(a  x  b)  a  E(x)  b  a    b 

 E(x  y)  E(x)  E( y) 

where a and b are constants 

Some properties of variance : 

• 

• 

• 

• 

σ2 = E [(X − μ)2] = E(X2 ) − μ 2 = E(X2 ) −[E(X)]2
 

Var (cX ) = c2Var( X ) 

where μ = E(X) 

where c is any constant 

The quantity E [(X − a)2] is a minimum when a = μ = E(X ) 

If X and Y are independent random variables, 

Var (X + Y ) = Var (X) + Var (Y) or 𝜎𝟐𝟐 
𝑿𝑿+𝑌 = 𝜎𝟐𝟐 + 𝜎𝟐𝟐 𝑿𝑿 𝑌 

Var (X - Y ) = Var (X) - Var (Y) or 𝜎𝟐𝟐 
𝑿𝑿−𝑌 = 𝜎𝟐𝟐 − 𝜎𝟐𝟐 𝑿𝑿 𝑌 



Homework 2: The number of e-mail messages received per hour has the following distribution. 

compute the expected value and variance. 
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Lecture 2: Distribution function Expectation of a Discrete Random Variables 
 

 

 

 

 

 

 

 

 

 

 

 

 

x = number of message 10 11 12 13 14 15 

f(x) 0.08 0.15 0.30 0.20 0.20 0.07 
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Exercise 1: compute the expected value and variance of the number of rewards in Example 3 in this 

Lecture. 

E(x) = 0*.05+1*0.15+2*0.20+3*0.60 = 2.35 

Var (x) = (0-2.35)2 * 0.05+ (1-2.35)2*0.15+(2-2.35)2*0.20+(3-2.35)2*0.60 = 0.8275 

Homework 1: Let X and Y be the random independent events of rolling a fair die. Compute the 

expected value of X + Y, and the variance of X + Y. 
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Lecture 2: Distribution function Continuous Random Variables 
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Notice that if c ≥ 0, then Property 1 is satisfied. So f (x) must satisfy Property 2 in order for it to 

be a density function. 

𝑜𝑡ℎ𝑒𝑟𝒐𝒐𝒐𝒐𝑠𝑒 𝟎𝟎 
is a density function, and then find P(1 < X < 2). 

Solution: 

0 <x < 3 
= 𝑓 𝗑 

Example 6: Find the constant c such that the function 
cx2

 

Continuous Random Variables : 

A nondiscrete random variable X is said to be absolutely continuous, or simply continuous, if its 

distribution function may be represented as 
𝗑 

𝐹 𝗑 = 𝑃 𝑿𝑿 ≤ 𝗑 = � 
−∞ 

𝑓 𝑢 𝑑𝑢 

where the function f(x) has the properties 

1. 
2. 

𝑓 𝗑 ≥ 𝟎𝟎 
∞ 

∫ −∞ 
𝑓 𝗑 = 𝟏𝟏 

The function f(x) is called the probability density function (p.d.f.). 
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Lecture 2: Distribution function Continuous Random Variables 
 

 

 

 
 

∞ 𝟑𝟑 

� 𝑓 𝗑 𝑑𝗑 = � cx2 𝑑𝗑 = 

−∞ 𝟎𝟎 

cx3
 

𝟑𝟑 

 

𝟑𝟑 
𝟎𝟎 

 
= 𝟗𝟗𝑐 

and since this must equal 1, c = 𝟏𝟏 
𝟗𝟗 

, and our density function is 
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Lecture 2: Distribution function Distribution Functions for Continuous Random Variables 
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Cumulative Distribution Function (c.d.f.) 

The c.d.f. of a continuous random variables is defined exactly the same as for discrete random 

variables 

𝐹  𝗑 = 𝑃(𝑿𝑿 ≤ 𝗑) 
where x is any real number, i.e., −∞ ≤ x ≤ ∞. So, 

𝗑 

𝐹 𝗑 = � 𝑓 𝗑 𝑑𝗑 

− ∞ 

Example 7: Find the distribution function for example 6. 

𝐹 𝗑 = ∫−∞ 
𝗑 

𝑓 𝗑 𝑑𝗑 = ∫−∞ 𝟗𝟗 

𝗑 1 
x2𝑑𝗑 = 

x3

 
𝟐𝟐𝟐𝟐 

where x ≤ 3. 
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Lecture 2: Distribution function Expectation of a Discrete Random Variables 
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Expectation : 

If X is a continuous random variable having probability density function f(x), then it can be shown 

that 𝗑 = 𝐸 𝑔 𝗑 
∞ 

= ∫ −∞ 
𝑔 𝗑 𝑓 𝗑 𝑑𝗑 

Example 8: The density function of a random X is given by 

 

 

 

 
 

The expected value of X is then 



Variance : 

If X is a continuous random variable having probability density function f(x), then the variance is 

given by 
∞ 

𝜎𝟐𝟐  = 𝐸  (𝑿𝑿 − )𝟐𝟐 𝑿𝑿  � 𝗑 −   𝟐𝟐𝑓  𝗑  𝑑𝗑 
−∞ 

Example 9: Find the variance and standard deviation of the random variable from Example 8, 

using the fact that the mean was found 
𝟒𝟒 

To be 𝗑 = E (X) = 
𝟑𝟑 

∞ 𝟐𝟐 𝟐𝟐 

𝜎𝟐𝟐 = 𝐸 (𝑿𝑿 − 
𝟒𝟒 

)𝟐𝟐 

𝟑𝟑 
= � 

−∞ 

𝗑 − 
𝟒𝟒 

𝟑𝟑 

∞ 

𝑓 𝗑 𝑑𝗑 = � 
−∞ 

4 
𝗑 − 

𝟑𝟑 

𝟏𝟏 𝟐𝟐 
𝗑 𝑑𝗑 = 

𝟐𝟐 𝟗𝟗 

And so the standard deviation is 𝜎 = 
𝟐𝟐 

= 
𝟐𝟐 

.
 

𝟗𝟗 𝟑𝟑 
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Lecture 2: Distribution function Variance of a Discrete Random Variable 
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Lecture 2: Distribution function The Binomial Distribution 
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Binomial: An experiment for which the following four conditions are satisfied is called a binomial 

experiment. 

1. The experiment consists of a sequence of n trials, where n is fixed in advance of the experiment. 

2. The trials are identical, and each trial can result in one of the same two possible outcomes, 

which are denoted by success (S) or failure (F). 

3. The trials are independent. 

4. The probability of success is constant from trial to trial: denoted by p. 

The probability mass function (PMF) of X is 

for x = 0; 1; 2; . . . ; n 

p = probability of success 

q = (1 – p) probability of failure 

n = number of trials 

x = number of successes 

f (x)  P( X  x)    p q 
x 

 n  x n x 

 

Example 10: In a digital communication system, the number of bits in error in a packet depicts a 

Binomial discrete random variable 



Example 11:The probability of getting exactly 2 heads in 6 tosses of a fair coin is 

Solution: 

P(𝐗𝐗 = 𝟐𝟐)  = 
𝟔𝟔

 
𝟐𝟐 

𝟏𝟏 
𝟐𝟐 

𝟐𝟐 

𝟏𝟏 
𝟔𝟔−𝟐𝟐 

𝟐𝟐 

𝟔𝟔! 
= 

𝟐𝟐! 𝟒𝟒! 

𝟏𝟏 
𝟐𝟐 

𝟐𝟐 

𝟏𝟏 

𝟐𝟐 

𝟒𝟒 𝟏𝟏𝟓𝟓 
= 

𝟔𝟔𝟒𝟒 

Exercise 2: If I toss a coin 20 times, what’s the probability of getting 2 or fewer heads? 

Solution: 
 20

 

0 

(.5)0 (.5)20 

 

  20!  

20!0! 
(.5)20  9.5x10 7 

 20

 

1 

(.5) (.5) 1 19 

20! 

19!1! 
(.5) 20  20x9.5x10 

 7 
 1.9x10 

 5 


 

 20

 

2 

(.5) (.5) 2 18 20! 

18!2! 
(.5) 

20  190x9.5x10  7  1.8x10  4 

 

 1.8x10 4 
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Lecture 2: Distribution function The Binomial Distribution 
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(Mean and Variance for Binomial Distribution) : 

If X is a binomial random variable with parameters p and n, then 

Mean   np 

Variance  2  npq 

Standard Deviation   npq 
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Lecture 2: Distribution function Properties of Binomial Distributions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise 3: Digital Channel the chance that a bit transmitted through a digital transmission channel is received in 

error is 0.1. Also, assume that the transmission trials are independent. Let X = the number of bits in error in the 

next four bits transmitted. Determine P(X = 2), the mean, variance, and standard deviation of this experiment. 
 

Solution: 
 

P(𝐗𝐗 = 𝟐𝟐)  = 
𝟒𝟒

 
𝟐𝟐 

 
 

𝟎𝟎. 𝟏𝟏  𝟐𝟐  𝟎𝟎. 𝟗𝟗  𝟒𝟒−𝟐𝟐 

E (X) = 𝗑 = 𝟒𝟒  𝟎𝟎. 𝟏𝟏 = 𝟎𝟎. 𝟒𝟒 𝜎𝟐𝟐 = 𝟒𝟒  𝟎𝟎. 𝟏𝟏 𝟎𝟎. 𝟗𝟗 = 𝟎𝟎. 𝟑𝟑𝟔𝟔 
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Lecture 2: Distribution function Properties of Binomial Distributions 
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Homework 5: Consider the problem of missile firing. Enumerate the possible outcomes of trail 

firing of missiles. Lets S denote the success of each trail with probability p and F denote the failure 

with probability q=1-p, then there are, 24 possible outcomes s listed below as set U, the complete 

sample space. 
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Homework 3: Suppose that three telephone users use the same number and that we are interested in 

estimating the probability that more than one will use it at the same time. If independence of 

telephone habit is assumed, the probability of exactly k persons requiring use of the telephone at the 

same time is given by the mass function pX(k) associated with the binomial distribution. Let it be 

given that, on average, a telephone user is on the phone 5 minutes per hour. 

Homework 4: In a digital communication channel, assume that the number of bits received in error 

can be modeled by a binomial random variable. The probability that a bit is received in error is 

10−5. If 16 million bits are transmitted, what is the probability that 150 or fewer errors occur? Let 

X denote the number of errors. 

Note : Clearly, this probability is difficult to compute. Fortunately, the normal distribution can be 

used to provide an excellent approximation in this example. 



The density function for this distribution is given by 
−(𝗑−μ)𝟐𝟐 

𝑓 𝗑 = 
𝟏𝟏 

𝟐𝟐𝜋σ 
𝑒 𝟐𝟐σ𝟐𝟐 − ∞ < 𝗑  < ∞ 

where μ and σ are the mean and standard deviation, respectively. The corresponding distribution 

function is given by 𝐹 𝗑 = 𝑃 𝑿𝑿 ≤ 𝗑 = 
𝜎   𝟐𝟐𝜋 

𝟏𝟏 𝗑 
∫ −∞ 

𝑒−(𝑣−μ)𝟐𝟐/𝟐𝟐𝜎𝟐𝟐 
𝑑𝑣 
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Lecture 2: Distribution function Normal distribution (Gaussian) 
 

 

• One of the most important examples of a continuous probability distribution is the normal 

distribution, sometimes called the Gaussian distribution. most popular to communication 

engineers is … AWGN Channels. 

• Random variation of many physical measurements are normally distributed. 

• The location and spread of the normal are independently determined by mean (μ) and standard 

deviation (σ). 
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Lecture 2: Distribution function Normal distribution (Gaussian) 
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Example 12: Assume that the current measurements in a strip of wire follows a normal distribution 

with a mean of 10 mA & a variance of 4 mA2. Let X denote the current in mA. What is the 

probability that a measurement exceeds 13 mA? 

 

 

 

 

 
Graphical probability that X > 13 for a normal 

random variable with μ = 10 and σ2 = 4. 



Information Theory / CE231 Lecturer Ali M. Alsahlany 

Lecture 2: Distribution function Standard Normal Distribution 
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A normal random variable with 

μ = 0 and σ𝟐𝟐 = 1 

Is called a standard normal random variable and is denoted as Z. 

𝑿𝑿 − μ 
𝒁𝒁 = 

The cumulative distribution function of a standard normal random variable is denoted as: 

Φ(z) = P(Z ≤ z) = F(z) 

Values are found in Z Table. 

σ 

Example 13: Assume Z is a standard normal random variable. Find P(Z ≤ 1.50). 

 

 
 

Answer: 0.93319 

 
Standard normal PDF 
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Lecture 2: Distribution function Standard Normal Distribution 
 

 

 

 

Example 14: 

1. P(Z > 1.26) = 0.1038 

2. P(Z < -0.86) = 0.195 

3. P(Z > -1.37) = 0.915 

4. P(-1.25 < 0.37) = 0.5387 

5. P(Z ≤ -4.6) ≈ 0 

6. Find z for P(Z ≤ z) = 0.05, z = -1.65 

7. Find z for (-z < Z < z) = 0.99, z = 2.58 

 

Graphical displays for standard normal distributions. 

 

22 2/24/2019 

Exercise 4: P(Z ≤ 1.53). 

Exercise 5: P(Z ≤ 0.01). 

Answer: 0.93699 

Answer: 0.50398 
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Example 15: From a previous example with μ = 10 and σ = 2 mA, what is the probability that the 

current measurement is between 9 and 11 mA? 
Answer: P 9  X  11 

P 
 9  10 

 
x  10 

 
11  10  

2 2 2 



 

 P 0.5  z  0.5

 P  z  0.5  P  z  0.5

 0.69146  0.30854  0.38292 
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Lecture 2: Distribution function Standard Normal Distribution 
 

 

 

Homework 6: Assume that in the detection of a digital signal, the background noise follows a normal distribution 

with μ = 0 volt and σ = 0.45 volt. The system assumes a digital 1 has been transmitted when the voltage exceeds 0.9. 

1. What is the probability of detecting a digital 1 when none was sent? Let the random variable N denote the 

voltage of noise. 

2. Determine the symmetric bounds about 0 that include 99% of all noise readings. 

3. Suppose that when a digital 1 signal is transmitted, the mean of the noise distribution shifts to 1.8 volts. 

What is the probability that a digital 1 is not detected? Let S denote the voltage when a digital 1 is 

transmitted. 
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Example 16: Determine the value for which the probability that a current measurement is below 

this value is 0.98. 

Answer: P  X  x  P 
 X  10 

 
x  10 


 2 2 




 P 
 

Z  
x  10  

 0.98 
 2 




z  2.05 is the closest value. 

z  2 2.05  10  14.1 mA. 
Determining the value of x to meet a specified probability. 
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Homework 8: Atelevision cable company receives numerous phone calls throughout the day from customers reporting service 

troubles and from would-be subscribers to the cable network. Most of these callers are put “on hold” until a company operator 

is free to help them. The company has determined that the length of time a caller is on hold is normally distributed with a mean 

of 3.1 minutes and a standard deviation 0.9 minutes. Company experts have decided that if as many as 5% of the callers are put 

on hold for 4.8 minutes or longer, more operators should be hired. 

a) What proportion of the company’scallers are put on hold formore than 4.8 minutes? Shouldthe companyhire more operators? 

b) At another cable company (length of time a caller is on hold follows the same distribution as before), 2.5% of the callers 

are put on hold for longer than x minutes. Find the value of x 
 

Homework 9: Suppose that a binary message either 0 or 1 must be transmitted by wire from location A to location B. However, 

the data sent over the wire are subject to a channel noise disturbance, so to reduce the possibility of error, the value 2 is sent over 

the wire when the message is 1 and the value - 2 is sent when the message is 0. If x, x = ±2, is the value sent from location A, then 

R, the value received at location B, is given by R = x + N, where N is the channel noise disturbance. When the message is 

received at location B the receiver decodes it according to the following rule: 

If R ≥ 0.5, then 1 is concluded 

If R < 0.5, then 0 is concluded 

If the channel noise follows the standard normal distribution compute the probability that the message will be 

wrong when decoded. 
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Homework 7: Repeat solve Homework 4 by using Gaussian distribution. 
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Example 17: If the probability that an individual will suffer a bad reaction from injection of a given 

serum is 0.001, determine the probability that out of 2000 individuals, (a) exactly 3, (b) more than 2, 

individuals. 

Solution: 

X is Bernoulli distributed, but since bad reactions are assumed to be rare events, we can suppose 

that X is Poisson distributed 

a) 𝑃 𝑿𝑿 = 𝗑 = 
λ𝐱𝐱e−λ

 
𝗑 ! 

𝑃 𝑿𝑿 = 𝟑𝟑 = 
λ𝟑𝟑e−2

 
𝟑𝟑 ! 

λ = np = (2000)(0.001) = 2 
 

=0.18 
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Let X be a discrete random variable that can take on the values 0, 1, 2,… such that the probability 

function of X is given by 

𝑓 𝗑 = 𝑃 𝑿𝑿 = 𝗑 = 
λ𝐱𝐱e−λ 

𝗑 ! 
𝗑 = 𝟎𝟎, 𝟏𝟏, 𝟐𝟐, … λ= np 

where λ is a given positive constant. This distribution is called the Poisson distribution 
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b) P(X>2) = 1 – [ P(X = 0)+P(X = 1)+P(X = 2)] 

= 𝟏𝟏 − [
2𝟎𝟎e−2

 

= 1 - 5e−2 = 0.323 

𝟎𝟎 ! 
+ 

2𝟏𝟏e−2 
𝟏𝟏 ! 

+ 
2𝟐𝟐e−2 

𝟐𝟐 ! 

Exercise 6: Let’s say you want to send a bit string of length n = 10𝟒𝟒 where each bit is independently 

corrupted with p = 10−𝟔𝟔. What is the probability that the message will arrive uncorrupted? 

Solution: 

λ = np = 10𝟒𝟒10−𝟔𝟔= 0.01. 

0.01𝟎𝟎e−0.01 

𝑃 𝑿𝑿 = 𝟎𝟎 = 
𝟎𝟎 ! 

= 𝟎𝟎. 𝟗𝟗𝟗𝟗 

Homework 10: Are we could have modelled X as a binomial distribution. That would have been 

computationally harder to compute but would have resulted in the same number (up to the 

millionth decimal) 
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Example 18: The number of visitors to a webserver per minute follows a Poisson distribution. If the average 

number of visitors per minute is 4, what is the probability that: 

a) There are two or fewer visitors in one minute? 

b) There are exactly two visitors in 30 seconds? 

Solution: 
a) The average number of visitors in a minute. In this case the parameter λ = 4. So the probability of two or 

fewer visitors in a minute is 

P(X = 0) + P(X = 1) + P(X = 2) 

𝑃  𝑿𝑿 = 𝟎𝟎 =  
𝑒−𝟒𝟒𝟒𝟒𝟎𝟎

 
𝟎𝟎! 

𝑒−𝟒𝟒𝟒𝟒𝟏𝟏 

𝑃 𝑿𝑿 = 𝟏𝟏 = 
𝟏𝟏! 

𝑒−𝟒𝟒𝟒𝟒𝟐𝟐 

𝑃 𝑿𝑿 = 𝟐𝟐 = 
𝟐𝟐! 

=  𝑒−𝟒𝟒 

 
=  𝟒𝟒𝑒−𝟒𝟒 
 
=  𝟖𝟖𝑒−𝟒𝟒 

 

The probability of two or fewer visitors in a minute is 𝑒−𝟒𝟒 + 𝟒𝟒𝑒−𝟒𝟒 + 𝟖𝟖𝑒−𝟒𝟒 = 0.238 

b) If the average number of visitors in 1 minute is 4, the average in 30 seconds is 2. 
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Homework 12: Consider a computer system with Poisson job-arrival stream at an average of 2 per 

minute. Determine the probability that in any one-minute interval there will be 

a) 0 jobs; 

b) exactly 2 jobs; 

c) at most 3 arrivals. 
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Uniform Distribution 

A random variable X is said to be uniformly distributed in a ≤ x ≤ b if its density function is flat 

over a region. 

𝑓 𝗑 = 

 
The distribution function is given by 

𝟏𝟏 

𝑏 − 𝑎 
, 𝑓𝑜𝑟 𝑎 ≤ 𝗑 ≤ 𝑏 

 

 
F(𝗑 )=P(X ≤ 𝗑) = 

𝟎𝟎 𝐱𝐱 < 𝑎 
(x−a)/(b − a ), a ≤ x ≤ b 

𝟏𝟏 𝐱𝐱 ≥ 𝑏 
 

The mean and variance are, respectively 
 
 

  = 𝟏𝟏(a + b), 𝜎𝟐𝟐 =  
𝟏𝟏

 (b−a)𝟐𝟐 
𝗑 𝟐𝟐 𝟏𝟏𝟐𝟐 
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Example 19: The figure below depicts the probability distribution for temperatures in a 

manufacturing process. The temperatures are controlled so that they range between 0 and 5 

degrees Celsius, and every possible temperature is equally likely. 

P(x) 
 

0.2 
 

 

 

 

 

 

 

0 
0 1 2 3 4 5 

Temperature (degrees Celsius) 
 

1. What is the Probability that the temperature is exactly 4 degrees? Answer: 0 

Since we have a continuous random variable there are an infinite number of possible 

outcomes between 0 and 5, the probability of one number out of an infinite set of numbers is 0. 
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x 
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2. What is the probability the temperature is between 1C and 4C? 

Answer: 

P(x) 

0.2 
 

 
 

 

 

 

 

0 
0 1 2 3 4 5 

Temperature (degrees Celsius) 
 

 
 

The total area of the rectangle is 1, and we can see that the part of the rectangle between 1 and 4 

is 3/5 of the total, so P(1  x  4) = 3/5*(1) = 0.6. 
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x 
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Homework 13: The current (in mA) measured in a piece of copper wire is known to follow a 

uniform distribution over the interval [0, 25]. Write down the formula for the probability density 

function f(x) of the random variable X representing the current. Calculate the mean and variance 

of the distribution and find the cumulative distribution function F(x). 
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3 

“The fundamental problem of communication is that of reproducing at one point either 

exactly or approximately a message selected at another point.” 

(Claude Shannon 1948) 

Information Theory is concerned with the theoretical limitations and potentials of systems that communicate. 

E.g., \What is the best compression or communications rate we can achieve" 

Communication is sending information from one place and/or time to another place and/or time over a medium 

that might have errors. 

General model of communication 
Noise 

Source Encoder Channel Decoder Receiver 
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General model of communication system 

Noise 

Source Encoder Channel Decoder Receiver 

Source • Voice, Words, Pictures, Music. 

Channel 
• Telephone line, High frequency radio link, Space communication link, Biological organism (send message 

from brain to foot, or from ear to brain) 

Noise 
• Some signal with time-varying frequency response, cross-talk, thermal noise, impulsive switch noise, etc. 

•  Represents our imperfect understanding of the universe. Thus, we treat it as random, often however 

obeying some rules, such as that of a probability distribution. 

Receiver • The destination of the information transmitted, Person, Computer, Disk, Analog Radio or TV internet 

4 



• 

• 

 
• 

• 

 
• 

processing done before placing info into channel 

First stage: data reduction (keep only important bits or remove 

source redundancy), 

Followed by redundancy insertion catered to channel. 

A code = a mechanism for representation of information of one 

signal by another. 

An encoding = representation of information in another form. 
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Noise 
 

 
 

Source Encoder Channel Decoder Receiver 
 

 

 

 

 

 

 

 

Encoder 
 

 

 

 

 

 

 

 

 

 

 
 

Decoder 
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General model of communication system 

• exploit and then remove redundancy 

• remove and fix any transmission errors 

• restore the information in original form 
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Assuming: 

- Information source generates a group of symbols from a given alphabet SS 

 

 so , s1 ,..., sK 1

- Each symbol has a probability Pk 

- Symbols are independent 

S  so , s1 ,..., sK 1

P(sk )  Pk , k  0,1,..., K 1 

 

 

 
K 1 

, Pk  1 
k 0 

 

 

- If Pk  1 

Then there is no uncertainty of occurrence of the event ; no gain of information i.e., there is no need for 

communications because the receiver knows everything. 
 

- AsPk
 decreases 

Then the uncertainty increases; the reception of sk corresponds to some gain of information 
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But How Much? 

6
 

The amount of information gained from knowing that the source produces the symbols is sk is related with as pk 

follows : 

Information 

Source 

Consider Discrete Information Source 



I (s )  log 
1 

k b 
P(s ) k 

2, bits 
e=2.718, nats 

Information Theory / CE231 Lecturer Ali M. Alsahlany 

Lecture 3: Information and quantification Information Source / Self Information 
 

 
 

 

 

 

 

 

 

 
The unit of information depends on the base of the log 

10, Hartleys 

 

The amount of information in bits about a symbol is closely related to its probability of occurrence 
 

 

I (sk ) 
 

 

 

 

0 1 
Psk 

I(Si)  0 , a real nonnegative measure 

I(Si) is a continuous function of p 

I (sk ) I (si ) if Pk  Pi 

7 

𝐿𝑛 𝑝 
log𝑎(𝑝) = 

𝐿𝑛 𝑎
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Properties of Self Information 

Self Information: Is a function which measures the amount of information after observing the symbol sk 

A low probability event contains a lot of information and vice versa 
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-The information obtained from the occurrence of two independent events is the sum of the information obtained 

from the occurrence of the individual events 

I ( AB)  logb 

 
 logb 

1 

P( AB) 

1 

P( A)P(B) 

 logb 
1 

P( A) 
 logb 

1 

P(B) 

 I ( A) I (B) 
 

 
 

Example 1: Let H and T are the outcomes of a flipping coin, calculate the self information for the following 

cases: 
 

(a) Fair coin with P (H) = P (T) = 0.5 

(b) Unfair coin with P(H) = 1/8, P(T) = 7/8 

(a) I (H) =I (T))= 1 bit 

(b) I (H) = 3 bits I (T) = 0.193 bits 
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 I ( AB)  I ( A)  I (B) 

Information Source / Self Information 



2 5 

 

 

 

 

 

 

 

Example 2: A source puts out one of five possible messages during each message interval. The probability of 

these messages are {m1,…,m5} :P1 = 1/2, P2 = 1/4, P3 = 1/8, P4 = 1/16 and P5 = 1/16 What is the information 

content of these messages in bit? 
 

I (m1 )  log2 
1 

 
 

P(m1 ) 
 log2 P(m1 )  

1 
log2 ( 

2
)  1bit 

 

I (m2 

 

I (m3 

)  log2 

 

)  log2 

1 
 

 

P(m2 ) 

1 
 

 

P(m3 ) 

 log2 

 

 log2 

 

P(m2 

 

P(m3 

)  



)  

1 
log2 ( 

4
) 

1 
log2 (

8
) 

 2bits 

 
 

 3bits 

 

 
I (m 

 
)  log 

1 
 log 

 

 
P(m 

 
)  log ( 

1 
)  4bits 

 

4 

 
 

 
I (m 

2 

 
 

 

)  log 

P(m4 ) 

1 
 

 

2 

 
 

 

 log 

 

 
P(m 

4 

 
 

 

)  log 

2 16 

 

( 
1 

 

 
 
)  4bits 

2 

P(m5 ) 16 
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Exercise 1: For 128 equally likely and independents messages find the information content (in bits) in each of 

the messages. 
Solution: 

I (m)  log 
2 

1 

P(m ) 
 log 

2 
P(m)  log (128)  7bits 

2 
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Homework 1: Suppose in sizing up the data storage requirements for a word processing system to be used in 

production of a book, it is required to calculate the information capacity. The book consist of 450 pages, 500 

words per page, each containing 5 symbols are chosen at random from a 37- ary alphabet (26 letters, 10 

numerical digits and one blank space). Calculate the information capacity of the book. 



 

 

 

 

 

 

 

 

 

 

For a source containing N independent symbols, its entropy is defined as 
 

 

Example 3 : Calculate the entropy of the outcomes of a fair flipping coin 
 

H  P(H ) log2 
1 

 
 

P(H ) 
 P(T ) log2 

1 
 

 

P(T ) 

H  0.5 log2 
1 

 
 

0.5 
 0.5 log2 

1 
 

 

0.5 
 0.5  0.5  1bit / symbol 
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Entropy: It is the average number of bits per symbol required to describe a source 

11 
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H   Pi I (si ) 
i 1 

N 

H   P log 

N   1  
i b 

i1 P(s ) i 



N 
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H is a positive quantity H  0 

If all a priori probabilities are equally likely (Pi    1/ N for all N symbols) 

then the entropy is maximum and given by: 
 

 

 
 

The proof:  

If all a priori probabilities are equally likely (Pi = 1/N for all N symbols) 

H   Pi 

i1 

log2 (Pi )  (1/ 
 

N )
i1 

log2 (1/ N ) 

 (1/ N )[N logb (1/ N )] 

 log2 (1/ N ) log2 N 
 

 
 

12 

N 
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0  H  logb N 

H  logb N 

Properties of Entropy 



 

 

 

 

 

 

 

 

i.e., you need log2N bits to represent a variable that can take one of N values if N is a power of 2 

If these values are equally probable, the entropy is equal to certain number of bits 

 

If one of the events is more probable than others, observation of that event is less informative 

 

Conversely, rarer events provide more information when observed. Since observation of less probable 

events occurs more rarely, the net effect is that the entropy received from non uniformly distributed 

data is less than log2N 

Entropy is zero when one outcome is certain, so entropy refers to disorder or uncertainty of a 

message 
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According to Shannon, the entropy is the average of the information contained 

in each message of the source, irrespective the meaning of the message 
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Example 4: Find and plot the entropy of the binary code in which the probability of occurrence for 

the symbol 1 is P and for the symbol 0 is 1-P 
 

 

H  
i1 

Pi log2 Pi  P log2 P  1 Plog2 1 P 1 
H

 

v logv 0 as v 0 

P  0  H  0 bit/symbol 

P  1  H  0 bit/symbol 0 1/2 1 p 

P  
1 
 H 

2 
  

1
 

2 
log2 

1 
 

1 

2 2 
log2 

1 
 

1 
 

1 

2 2 2 
 1 bit/symbol 

P  
1 
 H 

4 

  
1 

log 
4 

2 

1 
 

3 
log 

4 4 2 

3 
 0.8113 

4 
bits/symbol 

Example 5: Calculate the average information in bits/character in English assuming each letter is 
equally likely 

26 

H 
i1 

log2 N  log2 26  4.7 bits/character 

14 

2 
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Exercise 2: For Uniform distribution P(xi)= 1/N find the average information 

Solutions: 𝐻  𝑿𝑿 = 
∑𝑁 

𝟏𝟏 
𝒊𝒊=𝟏𝟏 𝑁 𝐼  𝗑𝒊𝒊 =  

𝟏𝟏 
∑𝑁 

𝑁 𝒊𝒊=𝟏𝟏 −𝑙𝑜𝑔 
𝟏𝟏 

𝟐𝟐 𝑁 𝐼  𝗑𝒊𝒊 = 
𝟏𝟏 

𝑁 
∗ 𝑁 ∗ 𝑙𝑜𝑔  𝑁 𝟐𝟐 

= 𝑙𝑜𝑔𝟐𝟐𝑁 
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Homework 2: Consider source transmitting six symbols with probability as given : 
 

 A (1/2) D (1/16) 

B (1/32) E (1/4) 

 
 

Find the average information or entropy. 

C (1/8) F (1/32) 
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Homework  3:  A  source  sending  2  symbols.  A  and  B  if  the 𝐻𝗑𝒊𝒊 = 𝟎𝟎. 𝟔𝟔  and  self  information  is  0.3  find  the 

probability of A and B. 



The information rate is represented by R and it is represented in average number of bits of information per second. 

And is given as, 

Information Rate : R = rH 

Information rate R it is calculated as follows: 

𝘙 = 𝑟 𝒊𝒊𝑛 
𝑠𝑦𝑚𝑏𝑜𝑙 

𝑠𝑒𝑐𝑜𝑛𝑑 
∗ 

𝑏𝒊𝒊𝑡𝑠 𝑏𝒊𝒊𝑡𝑠 
𝐻 𝒊𝒊𝑛 = 

𝑠𝑦𝑚𝑏𝑜𝑙 𝑠𝑒𝑐𝑜𝑛𝑑 
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Example 6: A PCM source transmits four samples (messages) with a rate 2 samples / second. The probabilities of 

occurrence of these 4 samples (messages) are p1 = p4 = 1/8 and p2 = p3 = 3/8. Find out the information rate of the 

source. 
Solution: 𝐻 = 𝑝 𝑙𝑜𝑔 𝟏𝟏 + 𝑝 𝑙𝑜𝑔 𝟏𝟏 + 𝑝 𝑙𝑜𝑔 𝟏𝟏 𝟏𝟏 

 
𝟏𝟏 

𝟏𝟏 𝟐𝟐 𝑝𝟏𝟏 

𝟑𝟑 
𝟐𝟐 

𝟑𝟑 
𝟐𝟐 𝑝𝟐𝟐 

𝟑𝟑 
𝟑𝟑 

𝟑𝟑 
𝟐𝟐 

𝟏𝟏 
𝑝𝟑𝟑 

+ 𝑝𝟒𝟒𝑙𝑜𝑔𝟐𝟐(𝑝𝟒𝟒
)  

𝑏𝒊𝒊𝑡𝑠 
𝐻 = 

𝟖𝟖 
𝑙𝑜𝑔𝟐𝟐   𝟖𝟖 + 

𝟖𝟖 
𝑙𝑜𝑔𝟐 𝟖𝟖 

+ 
𝟖𝟖 

𝑙𝑜𝑔𝟐 𝟖𝟖 
+ 

𝟖𝟖 
𝑙𝑜𝑔𝟐𝟐   𝟖𝟖 = 𝟏𝟏. 𝟖𝟖 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

𝘙 = 𝑟𝐻 = 𝟐𝟐𝐵 
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

∗ 𝟏𝟏. 𝟖𝟖 
𝑏𝒊𝒊𝑡𝑠 

= 𝟑𝟑. 𝟔𝟔 
𝑏𝒊𝒊𝑡𝑠 

𝑠𝑒𝑐𝑜𝑛𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 

In the example we discussed above, there are four samples (levels). Those four levels can be coded using binary 

PCM as shown down in the table: 
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Example 7: In the transmission scheme of example 6, calculate the information rate if all messages are equally likely. 

Solution: Since they are equally likely, their probabilities p1 = p2 = p3 = p4 = 1/4 

𝐻 = 𝑙𝑜𝑔𝟐𝟐   𝟒𝟒 = 𝟐𝟐 𝑏𝒊𝒊𝑡𝑠/𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

𝘙 = 𝑟𝐻 = 𝟐𝟐 
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

∗ 𝟐𝟐 
𝑠𝑒𝑐𝑜𝑛𝑑 

𝑏𝒊𝒊𝑡𝑠 
= 𝟒𝟒 

𝑏𝒊𝒊𝑡𝑠 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 

Just before this example we have seen that a binary coded PCM with 2 bits per message is capable of conveying 4 

bits of information per second. This has been made possible since all the messages are equally likely. Thus with 

binary PCM coding the maximum information rate is achieved if all messages are equally likely. 
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Message or level Probability Binary digits 

Q1 1/8 00 

Q2 3/8 01 

Q3 3/8 10 

Q4 1/8 11 

Since one bit is capable of conveying 1 bit of information, the above coding scheme is capable of conveying 4 bits of 

information per second. But in example, we have obtained that we are transmitting 3.6 bits of information per 

second. This shows that the information carrying ability of binary PCM is not completely utilized by the 

transmission scheme discussed in example . This situation is improved in the next example. 
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The joint entropy represents the amount of information needed on average to specify the value of two 

discrete random variables 
The entropy of the pairing (X,Y) 

𝐻(𝑿𝑿,  𝑌)= -∑𝑚 𝒋𝒋=𝟏𝟏 𝒊𝒊=𝟏𝟏 ∑𝑛 
𝑝 (𝗑𝒊𝒊, 𝑦𝒋𝒋) 𝑙𝑜𝑔𝟐𝟐𝑝(𝗑𝒊𝒊, 𝑦𝒋𝒋) 

Example 8: Let X represent whether it is sunny or rainy in a particular town on a given day. Let Y represent whether 

it is above 70 degrees or below seventy degrees. Compute the entropy of the joint distribution P(X, Y ) given by 

P(sunny, hot) = 1/2 

P(sunny, cool) = 1/4 

P(rainy, hot) = 1/4 

P(rainy, cool) = 0 

Answer: 

H(X, Y ) = − 1/2 log 1/2 + 1/4 log 1/4 + 1/4 log 1/4 + 0 log 0 

= − − 1/2 + −1/2+−1/2 = 
𝟑𝟑 

bits/symbol 
𝟐𝟐 

18 



Homework 5: Two random variables have joint probability distribution p( x, y ) given 

Find E(X), E(Y), H(X), H(Y), and H(X,Y) 
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p( x, y) 

y 

0 1 2 

 
x 

0 3/24 2/24 1/24 

1 2/24 5/24 2/24 

2 6/24 1/24 2/24 
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Homework 4 xxxx For discrete memory channel the joint probability is tabulated as :. 

P(x,y) = 

Find H(X), H(Y), and H(X,Y) 

𝟎𝟎. 𝟐𝟐 𝟎𝟎. 𝟏𝟏 𝟎𝟎. 𝟑𝟑 
𝟎𝟎. 𝟎𝟎𝟏𝟏 𝟎𝟎. 𝟎𝟎𝟑𝟑 𝟎𝟎. 𝟎𝟎𝟎𝟎 



Example 9: For discrete memory channel the joint probability is tabulated as:. 

Find joint and conditional entropy H (Y | X ) 

Answer: 

H(X,Y)= -1/2log(1/2) – 1/4log(1/4) – 0log(0) – 1/4log(1/4) = 1.5 bits/symbol 

H(Y/X)= -1/2log2/3-1/4log1/3-0log0-1/4log1 = 0.689 bits/symbol 
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p(x, y) y=0 y=1 

x=0 1/2 1/4 

x=1 0 1/4 
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Conditional Entropy 

Given a pair of random variables (X, Y ), the conditional entropy H(X/Y ) is defined as 

=    𝐻(𝑿𝑿/𝑌)= -∑𝑚 𝒋𝒋=𝟏𝟏 𝒊𝒊=𝟏𝟏 
∑𝑛 

𝑝 (𝗑𝒊𝒊, 𝑦𝒋𝒋) 𝑙𝑜𝑔𝟐𝟐𝑝(𝗑𝒊𝒊/𝑦𝒋𝒋) 

=    𝐻(𝑌/𝑿𝑿)= -∑𝑚 𝒋𝒋=𝟏𝟏 𝒊𝒊=𝟏𝟏 
∑𝑛 

𝑝 (𝗑𝒊𝒊, 𝑦𝒋𝒋) 𝑙𝑜𝑔𝟐𝟐𝑝(𝑦𝒋𝒋/𝗑𝒊𝒊) 



Example 10: Find joint and conditional entropy 

Answer: 

H(X/Y)= H(X,Y) – H(X) = H (1/2,1/4,0,1/4)-H(3/4,1/4) = 0.6989 
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p(x, y) y=0 y=1 

x=0 1/2 1/4 

x=1 0 1/4 
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Chain Rule: 

 

 
H(X,Y) = H (Y/X) + H (X) 

H (Y/X) is the average additional information in Y when you know X 
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Homework 6: A transmitter produces three symbols A, B, C which are related with joint probabilities as shown in 

the table below. 
 

Calculated the joint probabilities, the average entropy of a given symbols.. 
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k P(k) 

A 11/30 

B 7/12 

C 1/20 

 

P(j/k) J 

 

 
k 

 A B C 

A 0 4/5 1/5 

B 1/2 1/2 0 

C 1/2 2/5 1/10 
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Mutual  Information  𝐼  X; 𝑌 ∶consider  the  set  of  symbols  𝗑𝟏𝟏,  𝗑𝟐𝟐,..,  𝗑𝑛.  The  source  may  produce  𝑦𝟏𝟏,  𝑦𝟐𝟐,..,  𝑦𝑛. 
Theoretically, if the noise and jamming is zero then the set x = set y and n = m. however , due to noise and 

jamming there will be a conditional probability of 𝑝(𝑦𝒋𝒋/𝗑𝒋𝒋). 𝑇 𝑇𝑥 

This the statistical average of all the pairs 𝐼(𝗑𝒊𝒊, 𝑦𝒋𝒋), i= 1,2,…, n, j= 1,2, …,m . 𝗑𝟏𝟏 

𝑦 

𝑦𝟏𝟏 

𝗑𝟐𝟐 Noise 

𝐼(X, 𝑌)= ∑𝑚 𝒋𝒋=𝟏𝟏 𝒊𝒊=𝟏𝟏 ∑𝑛 
𝑝 (𝗑𝒊𝒊, 𝑦𝒋𝒋) 𝐼(𝗑𝒊𝒊, 𝑦𝒋𝒋) 

=∑𝑚 𝒋𝒋=𝟏𝟏 𝒊𝒊=𝟏𝟏 ∑𝑛 𝑝 (𝗑 , 𝑦 ) 𝑙𝑜𝑔 
𝑝(𝗑𝒊𝒊/𝑦𝒋𝒋) 

. 

. 

. channel 
𝒊𝒊 𝒋𝒋 𝟐𝟐 

𝑝(𝗑𝒊𝒊 ) 𝗑 

. 

. 

. 
𝑦 

𝑦𝟐𝟐 

=∑𝒋𝒋=𝟏𝟏 ∑𝒊𝒊=𝟏𝟏 𝑝 (𝗑𝒊𝒊, 𝑦𝒋𝒋) 𝑙𝑜𝑔𝟐𝟐 
𝑚 𝑛 𝑝(𝑦𝒋𝒋/𝗑𝒊𝒊) 

𝑛 𝑛 

𝑝(𝑦 ) 
bits 

𝒊𝒊 
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Homework 7: Prove that 

1. 
2. 

𝐻 X, 𝑌 = 𝐻 X + 𝐻 𝑌 X . 
𝐼 X; 𝑌 = 𝐻 X − 𝐻 X 𝑌 . 



P ( Y | X ) 

 

 

 

 

 

 

 

 
 

Example 11: For X data transmitted and received as Y after passing through the channel. 

Noise Channel 

X Y 
 

H(X) is the information 

generated by the source 

then sent 

 

 

 
H(X|Y) is the data lost 

through the channel and 

did not arrived. 

H(Y) is the received data a mix of 

part of H(X) from the transmitter 

with H(Y|X) the noise from the 

channel 

H(Y|X) is the added noise 

by the channel 

𝐼 X; 𝑌 is the intersection between 

the transmitted and received data 

which represents the data that 

survived through the channel. 
 

𝐼 X; 𝑌 = 𝐻 X − 𝐻 X 𝑌 = 𝐻 X + 𝐻 𝑌 − 𝐻(X, 𝑌) 
 

Mutual Information 𝐼 X; 𝑌 ∶It is a measure of mutual dependence between variables; it quantifies the amount of 

information obtain about random variable from the other. 
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Example 12: of joint entropy. Let p(x, y) be given by 

Find 

(a) The marginal entropies [H(X), H(Y )]. 

(b) The system entropy H(X, Y ). 

(c) The noise and losses entropies H(Y | X). 

(d) The mutually information between (𝗑𝟏𝟏𝑎𝑛𝑑𝑦𝟐𝟐). 

(e) The transformation. 

(f) Draw a channel model. 

Solution: 

a. From p(X, Y) 

P(x) = [ 0.75 0.125 0.125] 

P(y) = [0.5625 0.4375] 

 

X𝟏𝟏 

X𝟐𝟐 

X𝟑𝟑 

𝑌𝟏𝟏 𝑌𝟐𝟐 

𝟎𝟎. 𝟎𝟎 𝟎𝟎. 𝟐𝟐𝟎𝟎 
𝟎𝟎 𝟎𝟎. 𝟏𝟏𝟐𝟐𝟎𝟎 

𝟎𝟎. 𝟎𝟎𝟔𝟔𝟐𝟐𝟎𝟎 𝟎𝟎. 𝟎𝟎𝟔𝟔𝟐𝟐𝟎𝟎 

𝑁 𝑀 

𝐻  X = −  � 𝑝 X𝒊𝒊   
𝑙𝑜𝑔𝟐𝟐𝑝  𝗑 𝒊𝒊 , 𝐻  𝑌 = −  � 𝑝(𝑌𝒋𝒋)𝑙𝑜𝑔𝟐𝟐𝑝  𝑌(𝒋𝒋) 

𝒊𝒊=𝟏𝟏 𝒋𝒋=𝟏𝟏 

H(X) = -[0.75𝑙𝑜𝑔𝟐𝟐  0.75+ 0.125 𝑙𝑜𝑔𝟐𝟐  0.125+0.125𝑙𝑜𝑔𝟐𝟐0.125] = 1.06127 bits/ symbol 

H(Y) = -[0.5𝟔𝟔𝟐𝟐𝟎𝟎𝑙𝑜𝑔𝟐𝟐  0.5𝟔𝟔𝟐𝟐𝟎𝟎 + 0. 𝟒𝟒𝟑𝟑𝟒𝟒𝟎𝟎𝑙𝑜𝑔𝟐𝟐  0. 𝟒𝟒𝟑𝟑𝟒𝟒𝟎𝟎] = 0.9887 bits/ symbol 
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𝒋𝒋=𝟏𝟏 

 

 

 

 

 

 

 

 
 

b. H(X, Y) = -∑𝑚 ∑𝑛 𝑝 X𝒊𝒊, 𝑌𝒋𝒋 𝑙𝑜𝑔𝟐𝟐𝑝  X𝒊𝒊, 𝑌𝒋𝒋 
𝒋𝒋=𝟏𝟏 𝒊𝒊=𝟏𝟏 

 

H(X,Y) = 1.875 bits/symbol 

c. 𝐻(𝑌/X) = 𝐻 X, 𝑌 - 𝐻(X) = 1.875-1.06127 = 0.81373 bits/symbol 

𝐻(X/𝑌) = 𝐻 X, 𝑌 - 𝐻(𝑌) = 1.875- 0.9887 = 0.8863 
 

d. 𝐼(X 
 

𝟏𝟏 , 𝑌𝟐 ) = 𝑙𝑜𝑔 
 

𝟐𝟐 
𝑝(X𝒊𝒊,𝑌𝒋𝒋)  

, 𝐼(X
 

𝑝(X𝟏𝟏) 

 
𝟏𝟏 , 𝑌𝟐 ) = 𝑙𝑜𝑔 

 
𝟐𝟐 

𝑝(X𝟏𝟏/𝑌𝟐𝟐 ) 

𝑝(X𝒊𝒊) 
but p(X 

 
𝟏𝟏 /𝑌𝟐𝟐 ) = 

𝑝(X𝟏𝟏,𝑌𝟐𝟐) 

𝑝(𝑌𝟐𝟐) 
 

Then 𝐼(X , 𝑌 ) = 𝑙𝑜𝑔 𝑝(X𝟏𝟏,𝑌𝟐𝟐) = 𝑙𝑜𝑔 
  0.25 

= -0.3923 bits , that means 𝑌 𝑔𝒊𝒊𝑣𝑒𝑠 𝑎𝑚𝑏𝒊𝒊𝑔𝑢𝒊𝒊𝑡𝑦 𝑎𝑏𝑜𝑢𝑡 X 
𝟏𝟏 𝟐𝟐 𝟐𝟐 𝑝(X𝟏𝟏).𝑝(𝑌𝟐𝟐) 𝟐𝟐0.75∗0.4375 𝟐𝟐 𝟏𝟏 

e. 𝐼 X; 𝑌 = 𝐻 X − 𝐻 X 𝑌 

= 1.06127-0.8863= 0.1749 bits/ symbol 

f. To draw channel model we must find p(y/x) matrix from p(x, y) 

p(Y/X) = -∑𝑁 X𝒊𝒊, 𝑌 /𝑝  X𝒊𝒊 
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X𝟏𝟏 

X𝟐𝟐 

X𝟑𝟑 

𝑌𝟏𝟏 𝑌𝟐𝟐 

(𝟎𝟎. 𝟎𝟎)/(𝟎𝟎. 𝟒𝟒𝟎𝟎) (𝟎𝟎. 𝟐𝟐𝟎𝟎)/(𝟎𝟎. 𝟒𝟒𝟎𝟎) 

𝟎𝟎 (𝟎𝟎. 𝟏𝟏𝟐𝟐𝟎𝟎)/(𝟎𝟎. 𝟏𝟏𝟐𝟐𝟎𝟎) 

𝟎𝟎. 𝟎𝟎𝟔𝟔𝟐𝟐𝟎𝟎 /(𝟎𝟎. 𝟏𝟏𝟐𝟐𝟎𝟎 (𝟎𝟎. 𝟎𝟎𝟔𝟔𝟐𝟐𝟎𝟎)/(𝟎𝟎. 𝟏𝟏𝟐𝟐𝟎𝟎) 

𝟐𝟐 𝟏𝟏 

𝟑𝟑 𝟑𝟑 
= 𝟎𝟎 𝟏𝟏 

𝟏𝟏 𝟏𝟏 

𝟐𝟐 𝟐𝟐 
Unit row summation 

X𝟏𝟏 

X 𝟐𝟐 1 

2/3 

1/3 𝑌 𝟏𝟏 

X𝟑𝟑 
1/3 

1/2 𝑌 𝟐𝟐 

Homework 8: For the following channel model 

p(X𝟏𝟏)=0.6 

Find : 
X 

0.8 
𝟏𝟏 

1. 

2. 

3. 

H(X) 

H(Y) 

Noise and losses Entropy 

0.7 
X𝟑𝟑 

0.1 

𝑌𝟏𝟏 

𝟐𝟐 

𝑌𝟑𝟑 

𝑌 
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Exercise 3: of joint entropy. Let p(x, y) be given by 

 
Find 

(a) H(X),H(Y ). 

(b) H(X | Y ),H(Y | X). 

(c) H(X, Y ). 

(d) H(Y ) − H(Y | X). 

(e) I(X; Y ) . 

(f) Draw a Venn diagram for the quantities in (a) through (e). 

 
Solution: 

(a) H(X) =2/3 log 3/2 +1/3 log 3= 0.918 bits = H(Y). 

(b) H(X|Y)=1/3H(X|Y=0)+2/3H(X|Y=1)=0.667 bits = H (Y|X). 

(c) H(X,Y) = 3*1/3 log 3 = 1.5858 bits. 

(d) H(Y)-H(Y|X)=0.251 bits. 

(e) I(X;Y)=H(Y)-H(Y|X)=0.251 bits 

(f) Venn diagram to illustrate the relationships of entropy and relative entropy 
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p(X, Y) y 

 

 
x 

 0 1 

0 1/3 1/3 

1 0 1/3 
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• Introduction 

• Source coding of discrete sources 

• Fixed Length Code 

• Variable Length Code 

• Minimum Code Length 

• Code Efficiency 

• Average Code Length 

• Requirements for a useful symbol code 
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• Analog waveform sources 

The output of an analog source, in the simplest case, is an analog real waveform, representing, for example, a 

speech waveform. The word analog is used to emphasize that the waveform can be arbitrary and is not restricted 

to taking on amplitudes from some discrete set of values. 

Information 

Sink 

Source 

Decoder 

Channel 

Decoder 

3 

Introduction: A general block diagram of a point-to-point digital communication system given in Figure below. 

The source encoder converts the sequence of symbols from the source to a sequence of binary digits, preferably 

using as few binary digits per symbol as possible. The source decoder performs the inverse operation. 

Information 

Source 

Source 

Encoder 

Channel 

Encoder 

Channel 

• Discrete sources 

The output of a discrete source is a sequence of symbols from a known discrete alphabet X. This alphabet could 

be the alphanumeric characters, the characters on a computer keyboard, English letters, Chinese characters, 

the symbols in sheet music (arranged in some systematic fashion), binary digits, etc. 
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4 

• Alphabet size of 4 (A, B, C, D) 

• 𝑃  𝐴 =  𝑝𝟏𝟏  , 𝑃  𝐵 =  𝑝𝟐𝟐  , 𝑃  𝐶 =  𝑝𝟑𝟑  , 𝑃  𝐷 =  𝑝𝟒𝟒 

Self Information: Is a function which measures the amount of 

information after observing the symbol A 

Entropy: It is the average number of bits per symbol required to describe 

a source 

 
Simplest Code 

A → 00 

B → 01 

C → 10 

D → 11 

Symbol (𝐒𝐒𝐤𝐤): A 

Symbol probability: 𝑃 𝐴 
Codeword (𝑐𝑘): 00 

Codeword length (l): 2 

I ( A)  log 
1 

2 P( A) 
, bit 

H   Pi I (si ) 
i 1 

N 

, bit / symbol 

Coding: 

• Basic idea is to use as few binary digits as 

possible and still be able to recover the 

information exactly 

• Simple Model of a source (Called a DISCRETE MEMORYLESS SOURCE OR DMS) 

2/24/2019 



• It assigns a unique binary 

sequence to each input alphabet 

character such as 5, 6, or 7 bits 

Assume N is the number of symbols 

 If N is a power of 2, the fixed codeword length 

 If N is not a power of 2, the fixed codeword length 

𝐻 ≤ 𝑙𝑜𝑔𝟐𝟐N  , l ≥ 𝐻 
l = 𝐻 (If the symbols have the same probability) 
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• Sometimes the output of the source decoder must be an exact {replica of the information (e.g. computer data) — called 

NOISELESS CODING 

• Other times the output of the source decoder can be approximately equal to the information (e.g. music, tv, speech) — 

called CODING WITH DISTORTION 

Fixed Length Code 

R  l  log2 N 

R  l  log2 N 
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Variable Length Code 

• When the source symbols are not equally probable, a more efficient encoding method is to use variable 

length code words 

• A significant amount of data compression can be realized when there is a wide differences in probabilities of 

the symbols. To achieve this compression, there must also be a sufficiently large number of symbols 

Ex: Morse Code 

The codewords of letters that occur more frequently are shorter than those for letters that occur less frequently 

• The variable length codewords should depend on the probability 
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Variance of the code word length 
𝐾 

𝑉𝑎𝑟𝑽𝑽𝑎𝑛𝑐𝑒 =  � 𝑃𝑘 (𝑙𝑘−𝐿�) 𝟐𝟐 
𝑘=𝟏𝟏 

Average code word length 
𝐾 

𝐿�  =  � 𝑃𝑘 𝑙𝑘 

𝑘=𝟏𝟏 

• Consider a source has K symbols, each symbol 𝑠𝑘 has probability 𝑃𝑘, 

and represented by a code word 𝐶𝑘of length 𝑙𝑘 bits, then 

Average Code Length 

Minimum Code Length 

To be efficient one using knowledge of the statistics of the source such that: 

 Frequent source symbols should be assigned SHORT code words 

 Rare source symbols should be assigned LONGER code words 

Example 1: Simple discrete source, Alphabet size of 4 (A,B,C,D), 𝑃  𝐴 =  𝑝𝟏𝟏  = 𝑃  𝐵 =  𝑝𝟐𝟐= 𝑃  𝐶 =  𝑝𝟑𝟑  = 𝑃  𝐷 =  𝑝𝟒𝟒, 

Calculate the average and variance of the code 

Solution: 

𝐿�  = 2(𝑝𝟏𝟏+𝑝𝟐𝟐  + 𝑝𝟑𝟑  + 𝑝𝟒𝟒) = 2 

2/24/2019 
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Example 2: Calculate the average code word length for the following symbols 
 

Symbol S P(s) Code 

A 0.25 11 

B 0.30 00 

C 0.12 010 

D 0.15 011 

E 0.18 10 
 

 

𝐿� 

𝐾 

= � 𝑃𝑘 𝑙𝑘 

𝑘=𝟏𝟏 

𝐿�= 0.25(2) +0.30(2) +0.12 (3) +0.15(3) +0.18(2) = 2.27 bits 

 
It does not mean that we have to find a way to transmit a noninteger number of bits. Rather, it means that on 

average the length of the code is 2.27 bits 
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The outputs of an information source cannot be represented by a source code whose average length less than the source 

entropy 

𝐿𝑚𝑽𝑽𝑛  = 𝐻(𝑆) 

9 

Minimum Possible Code Word Length 

𝐿𝑚𝑽𝑽𝑛  ≥ 𝐻(𝑆) Shannon’s First Theorem 

Code Efficiency 

η = 
𝐿_𝑚𝑽𝑽𝑛 𝐻(𝑆) 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 

𝐿 ̅ 𝐿 ̅ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 
= = An efficient code means η 1 

Compression Ratio 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑽𝑽𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑽𝑽𝗑𝑒𝑑 𝑐𝑜𝑑𝑒 𝑡ℎ𝑎𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 
𝐶𝘙 = 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑽𝑽𝑎𝑏𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑐𝑜𝑑𝑒 

2/24/2019 
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Example 3: Source has an alphabet of 26 letters (English Alphabet) with independent and identically distributed random 

variables: { Xi , i=1,...,26} each occurring with the same probability. Evaluate the efficiency of a fixed length binary code 

in which: 

a. Each letter is encoded separately into a binary sequence 

b. Two letters at a time are encoded into a binary sequence 

 
a. Each letter is encoded separately into a binary sequence 

𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 
𝑏𝑽𝑽𝑡𝑠 

𝐻 = � 𝑙𝑜𝑔𝟐𝟐𝑁 = � 𝑙𝑜𝑔𝟐𝟐 𝟐𝟐𝟐𝟐 = 𝟒𝟒. 𝟕𝟕 
𝑠𝑦𝑚𝑏𝑜𝑙

 
𝑽𝑽=𝟏𝟏 

𝟐𝟐𝟐𝟐 
𝑽𝑽=𝟏𝟏 

𝑏𝑽𝑽𝑡𝑠 
𝘙 = 𝐿  = � 𝑙𝑜𝑔𝟐𝟐𝑁 𝗍 = 𝟓𝟓 

𝑠𝑦𝑚𝑏𝑜𝑙𝑒
 

𝑽𝑽=𝟏𝟏 
 

𝐻(𝑆) 
η = 

𝐿  ̅

 

= 𝟗𝟗𝟒𝟒. 𝟎𝟎𝟎𝟎𝟎𝟎𝟕𝟕% 

 

b. Two letters at a time are encoded into a binary sequence 

 
N=26*26=676 possible sequences 

𝘙 = 𝑙𝑜𝑔 
 

𝟐𝟐 
𝟐𝟐𝟕𝟕𝟐𝟐 𝗍= 10bits/2 symbol =5bits/symbol η = 

𝐻(𝑆) 
= 𝟗𝟗𝟒𝟒. 𝟎𝟎𝟎𝟎𝟎𝟎𝟕𝟕 

𝐿 ̅ 
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𝐻 𝑠 = ∑ 𝑃 
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Example 4: Calculate the entropy, minimum length, average code word length, and the compression ratio for the flowing 

source and the given two different codes for the following symbols 

Source 

Symbol 

𝐒𝐒𝐤𝐤 

Symbol 

Probability 

P𝐤𝐤 

Code I Code II 

Symbol Code 

Word 𝐜𝐜𝐤𝐤 

Code Word 

Length 𝑙𝐤𝐤 

Symbol Code 

Word 𝐜𝐜𝐤𝐤 

Code Word 

Length 𝑙𝐤𝐤 

𝐒𝐒𝟎𝟎 1/2 00 2 0 1 

𝐒𝐒𝟏𝟏 1/4 01 2 10 2 

𝐒𝐒𝟐𝟐 1/8 10 2 110 3 

𝐒𝐒𝟑𝟑 1/8 11 2 1111 4 

 

𝐾 
𝑘=𝟏𝟏  
𝑽𝑽 

𝑙𝑜𝑔 
 

𝟐𝟐 
𝟏𝟏 

𝑃𝑽𝑽 
=   1/2𝑙𝑜𝑔 

 
𝟐𝟐 (2)+1/4𝑙𝑜𝑔 

 
𝟐𝟐 (4)+ 1/8𝑙𝑜𝑔 

 
𝟐𝟐 (8)+1/8𝑙𝑜𝑔 

 
𝟐𝟐 (8)= 1.75 bits/symbol=𝐿𝑚𝑽𝑽𝑛 

 
�𝐿 =  ∑𝐾 𝑃 𝑙 𝐿� = 2x(1/2+1/4+1/8+1/8)=2 � 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟏𝟏 = 𝟏𝟏. 𝟎𝟎𝟕𝟕𝟓𝟓 

𝑘=𝟏𝟏 𝑘   𝑘 𝐿 = 𝟏𝟏 × + 𝟐𝟐 × + 𝟑𝟑 × + 𝟒𝟒 × 
𝟐𝟐 𝟒𝟒 𝟎𝟎 𝟎𝟎 

η = 
𝐻(𝑆) η = 

𝟏𝟏.𝟕𝟕𝟓𝟓 
= 𝟎𝟎. 𝟎𝟎𝟕𝟕𝟓𝟓 η = 

𝟏𝟏.𝟕𝟕𝟓𝟓
 

= 𝟎𝟎. 𝟗𝟗𝟑𝟑𝟑𝟑𝟑𝟑 

𝐿 𝟐𝟐 𝟏𝟏.𝟎𝟎𝟕𝟕𝟓𝟓 

CR= 2/2=1 CR= 2/1.875=1.0666 
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Example 5: 

CODE1, the symbols A &C are assigned to the same codeword. Thus, the first requirement of a useful code is 

that each symbol be assigned to a unique binary sequence IS NOT VALID. 

CODE2 , It is confusing to detect the code, Why? C is decoded as combination of (A, A), also D (B,B). 

Information Theory / CE231 Lecturer Ali M. Alsahlany 

Lecture 5: Source Coding Requirements for a useful symbol code /Uniquely Decodable 
 

 

 
 

 

Source symbol 
Code 1 Code 2 

Symbol Codeword Symbol Codeword 

A 00 0 

B 1 1 

C 00 00 

D 11 11 
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Uniquely Decodable 

A code is not uniquely decodable if two symbols have the same codeword, i.e., if 𝐶𝑠(𝑽𝑽)= 𝐶𝑠(𝒋𝒋)  for any i≠j or the 

combination of two codewords gives a third one 

 
It allows the user to invert mapping to the original sequence of elements of the source to (decoding) 
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Example 6: 

 

 

 

 

 

 

 
CODE1, the symbols S1 &S2 are assigned to the same codeword. S4 is a combination of (S3,S1) or (S3,S2). It is non 

uniquely detectable code 

CODE2 , all code words end with 0 except the last one is three 1s. The decoding rule is simple, accumulate bits 

until you get 0 or until you have three 1s. There is no ambiguity in this rule. 

CODE3 , each codeword starts with 0, and the only time we see a 0 is in the beginning of a codeword. 

Therefore, the decoding rule is accumulate bits until you see 0. The bit before the 0 is the last bit of the previous 

codeword. 

 Based on the average length, code 1 appears to be the best code However, it is not useful because it is non 

detectable 
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𝑆(𝑽𝑽) P Code 1 Code 2 Code 3 

𝑆(𝟏𝟏) 0.5 0 0 0 

𝑆(𝟐𝟐) 0.25 0 10 01 

𝑆(𝟑𝟑) 0.125 1 110 011 

𝑆(𝟒𝟒) 0.125 10 111 0111 

𝐿� 1 1.125 1.75 1.875 

 



Example 6: 

CODE2 , is called INSTANTENOUS CODE because the decoder knows the moment a codeword is complete. 

CODE3 , is called NOT INSTANTENOUS CODE because we have to wait till the beginning of the next 

codeword before we know that the current codeword is complete 
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𝑆(𝑽𝑽) P Code 1 Code 2 Code 3 

𝑆(𝟏𝟏) 0.5 0 0 0 

𝑆(𝟐𝟐) 0.25 0 10 01 

𝑆(𝟑𝟑) 0.125 1 110 011 

𝑆(𝟒𝟒) 0.125 10 111 0111 

𝐿� 1 1.125 1.75 1.875 
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How soon do we require a decoded symbol to be known? - 

e.g. “instantaneously” as soon as the codeword for the 

symbol is received. 

-within a fixed delay of when its codeword is received 

-not until the entire message has been received 

This property (Instantaneous) is not a requirement for unique decodability, because it depends 

How does the channel terminate the transmission? 

-e.g. it could explicitly mark the end 

-it could send only 0s after the end 

-it could send random garbage after the end,... 
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Example 7: 

Decode the string 011111111111111111 by code1 

01010101010101010 by code2 

 

 

 
Using code1 

The string could be decoded either S1 S3S3S3S3S3S3S3S3 and 1 is left which is not a codeword (Invalid decoding) 

OR the string could be decoded as S2 S3S3S3S3S3S3S3 and nothing left (Valid decoding) IT IS UNIQUE 

DECODABLE 

Using code2 

The string could be decoded either S1 S3S3S3S3S3S3S3S3 (Valid decoding) 

OR the string could be decoded as S2 S2S2S2S2S2S2S2S1 and left 0 which is a codeword S1 (Valid decoding) 

IT IS NOT UNIQUE DECODABLE 
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Si Code 1 Code 2 

S1 0 0 

S2 01 01 

S3 11 10 

 



Information Theory / CE231 Lecturer Ali M. Alsahlany 

Lecture 5: Source Coding Requirements for a useful symbol code /Uniquely Decodable 
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1- Construct a list of all the codewords. 

2- Examine all pairs of codewords to see if any codeword is a prefix of another codeword . 

3- Whenever you find such a pair, add the dangling suffix to the list unless you have added the same dangling 

suffix to the list in a previous iteration. 

4- Now repeat the procedure using this larger list. 

5- Continue in this fashion until one of the following two things happens: 

There are no more unique dangling , 

uniquely decodable 

You get a dangling suffix that is a codeword, 

not uniquely decodable 

2/24/2019 

Test for Unique Decodability 

Suppose we have two binary codewords a and b, where, a is k bits long, b is n bits long, and k < n If the first k 

bits of b are identical to a, then a is called a prefix of b. The last n−k bits of b are called the dangling suffix 

 

Example 8: if a = 010 and b = 01011, then a is a prefix of b and the dangling suffix is 11 

Steps of Unique Decodability 
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Example 9: 

 

 

 

 

 
Code1: S1 is a prefix of S2 code 1 will be [ 0,01,11,1 ] 

1 is a prefix of 11 but it is already added then the last version is [ 0,01,11,1 ] 

the codeword 1 is not a codeword. IT IS UNIQUELY DECODABLE 
 

 

 

Code2: S1 is a prefix of S2 code 2 will be [ 0,01,10, 1 ] 

In new list, 1 is a prefix for 10, the dangling suffix 0 , which is the codeword. then the last version is [ 0,01,10,1] 

IT IS NOT UNIQUELY DECODABLE 
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Si Code 1 Code 2 

S1 0 0 

S2 01 01 

S3 11 10 

 

 The variable length codewords should DEPEND ON PROBABILITY 

 Code should be UNIQUELY DECODABLE 
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Example 10: 
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A prefix code is uniquely decodable but the converse is not true 

2/24/2019 

P
re

fi
x
 

𝑆(𝑽𝑽) Code 1 Code 2 Code 3 

𝑆(𝟏𝟏) 0 0 0 

𝑆(𝟐𝟐) 1 10 01 

𝑆(𝟑𝟑) 00 110 011 

𝑆(𝟒𝟒) 11 111 0111 
 

 Not Uniquely Decodable Nor Prefix Code Uniquely Decodable Codes 

 

Prefix Code 

 Is a code in which no codeword is the beginning of another codeword 

 Is a code in which no codeword is a prefix to another codeword 

Since no codeword is a prefix of the other, we will never face the possibility of a dangling suffix being a 

codeword. In this case, the set of dangling suffixes is the null set, and we do not have to worry about finding a 

dangling suffix that is identical to a codeword 
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Homework 1: Determine the prefix codes and the uniquely decodable codes of the following codes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

19 2/24/2019 



Information Theory / CE231 Lecturer Ali M. Alsahlany 

Lecture 5: Source Coding Requirements for a useful symbol code /Prefix Code 
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1. Draw the rooted binary tree corresponding to the code (Decoding Tree) Starts from a single node (the root 

node) and has a maximum of two possible branches at each node. One of these branches corresponds to a 1 

and the other branch corresponds to a 0 

2. The code for any symbol can be obtained by traversing the tree from the root to the external node 

corresponding to that symbol . 

2/24/2019 

Test for Prefix Code 

Example 11: Draw the rooted binary tree for the following codes 
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Determine the type of nodes apart from the root node : 

Internal nodes that give rise to other nodes 

External nodes or leaves that terminated 

 

 

 

 

 

The prefix code has the codewords are only associated with the external nodes 
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A prefix code must satisfy the Kraft McMillan’s inequality 

But a code satisfies Kraft McMillan’s inequality is not necessarily be a prefix code 

2/24/2019 

Kraft-McMillan Inequality 

Example 12: 

 

 

 

 

 
For this code 2−1 + 2−2 + 2−3+2−2= 9/8 

which means that the code IS NOT A PREFIX CODE 

i.e., Kraft-McMillan Inequality can determine that a given code IS NOT A PREFIX CODE 
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Code Redundancy 

2/24/2019 

Example 13: For this code 

 

2−1 + 2−2 + 2−3+2−3= 1 

Is the code a PREFIX code? 

NO WHY? 

s3 is a beginning of s2 

Hence, if we have a uniquely decodable code that its codeword lengths satisfy the Kraft- McMillan inequality , 

then we can always find a prefix code with those codeword lengths 

Thus, by restricting ourselves to prefix codes, no need for nonprefix uniquely decodable codes that have a shorter 

average length 

Is the difference between the average length and the entropy 



Homework 2: : Calculate the entropy, minimum length, average code word length, and the compression ratio for the flowing 

source 
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𝐶 

𝐒𝐒𝐤𝐤 𝑃𝐤𝐤 𝐶𝐤𝐤 𝑙𝐤𝐤 

A 1/2 0 1 

B 1/4 10 2 

C 1/8 110 3 

D 1/8 111 3 
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Example 6: The code C𝟏𝟏  = {0; 101} is a prefix code because 0 is not a prefix of 101, nor is 101 a prefix of 0. 

Exercise 1: Is the code C𝟐𝟐  = {0; 10; 110; 111} prefix or not? 

Exercise 2: Is the code C𝟑𝟑  = {00; 01; 10; 11} prefix or not? 

Exercise 3: Is the code C𝟒𝟒  = {1; 101} prefix or not? 
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Lecture Outlines : 
 

 

 

• Shannon-Fano code 

• Huffman Code 

• Huffman vs. Shannon 
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1. Source symbols are listed in order of decreasing probability from left to right. 

2. Divide the list into two parts, with the total probability (or frequency of occurrence) of the left part 

being as close to the total of the right as possible. 

3. The left part of the list is assigned the binary digit 0, and the right part is assigned the digit 1. This 

means that the codes for the symbols in the first part will all start with 0, and the codes in the second 

part will all start with 1. 

4. Recursively apply the steps 2 and 3 to each of the two halves, subdividing groups and adding bits to 

the codes until each symbol has become a corresponding code leaf on the tree. 

3 

Algorithm 

2/24/2019 

It is a technique for constructing a prefix code based on a set of symbols and their probabilities 

(estimated or measured) 

It is suboptimal in the sense that it does not achieve the lowest possible expected code word length 



 

 

 

 

 

 

Example 1: Assume a sequence of alphabet S={ A , B , C , D , E , F } with the following occurrence 

weights, {9, 8, 6, 5, 4, 2} respectively. Apply Shannon Fano coding and discuss the suboptimality. 

 
Solution: 

 

 

 

 

 

 

 

 

 

 

 
 

9 8 6 5 4 2 
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9 8 6 5 4 2 

F E D C B A 
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A B C D E F 



 

 

 

 

 

 

 

 

 
 

  
 

 

 

 

 

 

 

 

 

 
 

 

9 8 9 8 

6 5 4 2 
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9 8 6 5 4 2 

F D E C B A 

 

 

 
 

9 8 6 5 4 2 

F D E C B A 
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F D C E 
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A B A B 



F E 

 

 

 

 

 

 

 

 

 
 

  
 

 

 

 

 

 

 

9 8 9 8 

4 2 

6 5 6 5 4 2 
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9 8 6 5 4 2 

F D E C B A 

 

 

 
 

9 8 6 5 4 2 

F D E C B A 
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D E C D F C 
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A B A B 



 

 

 

 

 

 

 

 
 

Symbol Frequency P CODE 

A 9 0.265 00 

B 8 0.235 01 

C 6 0.176 100 

D 5 0.147 101 

E 4 0.118 110 

F 2 0.059 111 
 

 

 

 

 

 
�𝐿 

𝐾 

�𝐿 =  � 𝑃𝑘 𝑙𝑘 

𝑘=𝟏𝟏 

 

=2x(0.235+0.265)+3x(0.176+0.147+0.118+0.058)= 2.5 bits/symbol 
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Exercise 1: Construct the Shannon-Fano code and the corresponding efficiency for DMS with the following 

probability. 

 

 
Solution: 

x 𝑃(𝑥𝑖𝑖)        Final length 

𝑥1 0.5 0       0 1 

𝑥2 0.15 1 0 0     100 3 

𝑥3 0.15 1 0 1     101 3 

𝑥4 0.08 1 1  0    110 3 

𝑥5 0.08 1 1  1 0   1110 4 

𝑥6 0.02 1 1  1 1 0  11110 5 

𝑥7 0.01 1 1  1 1 1 0 111110 6 

𝑥8 0.01 1 1  1 1 1 1 111111 6 

 
2/24/2019 8 

Information Theory / CE231 Lecturer Ali M. Alsahlany 
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x 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 

𝑃(𝑥𝑖𝑖 ) 0.5 0.15 0.15 0.08 0.08 0.02 0.01 0.01 

 



 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 
 

2/24/2019 

𝑁 

𝐻  X = −  � 𝑝 X𝒊𝒊   
𝑙𝑜𝑔𝟐𝟐𝑝  𝗑 𝒊𝒊 

𝒊𝒊=𝟏𝟏 

N 

= H   Pi I (si ) 
i 1 

𝐻  X  = 𝟎𝟎. 𝟓𝟓  × −𝑙𝑜𝑔𝟐𝟐   𝟎𝟎. 𝟓𝟓 + 𝟐𝟐 × 𝟎𝟎. 𝟏𝟏𝟓𝟓 × −𝑙𝑜𝑔𝟐𝟐   𝟎𝟎. 𝟏𝟏𝟓𝟓 + 𝟐𝟐 × 𝟎𝟎. 𝟎𝟎𝟎𝟎  × −𝑙𝑜𝑔𝟐𝟐   𝟎𝟎. 𝟎𝟎𝟎𝟎 + 

𝟎𝟎. 𝟎𝟎𝟐𝟐 × −𝑙𝑜𝑔𝟐𝟐 𝟎𝟎. 𝟎𝟎𝟐𝟐 + 𝟐𝟐 × 𝟎𝟎. 𝟎𝟎𝟏𝟏 × 𝑙𝑜𝑔𝟐𝟐   𝟎𝟎. 𝟎𝟎𝟏𝟏  = 2.149 ≈ 2.15 bit/symbol 

𝐿�  = 𝟎𝟎. 𝟓𝟓 × 𝟏𝟏 + 𝟎𝟎. 𝟏𝟏𝟓𝟓 × 𝟑𝟑 + 𝟎𝟎. 𝟏𝟏𝟓𝟓 × 𝟑𝟑 + 𝟎𝟎. 𝟎𝟎𝟎𝟎 × 𝟑𝟑 + 𝟎𝟎. 𝟎𝟎𝟎𝟎 × 𝟒𝟒 + 𝟎𝟎. 𝟎𝟎𝟐𝟐 × 𝟓𝟓 + 𝟎𝟎. 𝟎𝟎𝟏𝟏 × 𝟔𝟔 + 𝟎𝟎. 𝟎𝟎𝟏𝟏 × 𝟔𝟔 
= 𝟐𝟐. 𝟏𝟏𝟎𝟎 𝑏𝒊𝒊𝑡/𝑠𝑦𝑚𝑏𝑜𝑙 

η = 
𝐿_𝑚𝒊𝒊𝑛 

𝐿 ̅ 𝐿 ̅ 𝟐𝟐. 𝟏𝟏𝟎𝟎 
= 

𝐻(𝑆) 𝟐𝟐. 𝟏𝟏𝟓𝟓 
= = 𝟗𝟗𝟎𝟎 % 
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Homework 1: Apply the Shannon-Fano code procedure for DMS with the following probability. Find the 

corresponding efficiency and redundancy. 
 

 

x 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 

𝑃(𝑥𝑖𝑖 ) 0.3 0.25 0.15 0.12 0.08 0.1 
 

Homework 2: Apply the Shannon-Fano code procedure for DMS with the following probability. 

Find the corresponding efficiency and redundancy. 
 

x 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 

𝑃(𝑥𝑖𝑖) 1/4 1/8 1/16 1/16 1/16 1/4 1/16 1/8 

Homework 3: The text [ AAAABBBCDC] 

1. Find min code word used Shaanon-Fano. 
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Lecture 6: Source Coding  Shannon-Fano code 

 

https://www.youtube.com/watch?v=AQXMWnTEaZs
https://www.youtube.com/watch?v=-VD3o-QYqUA
https://www.youtube.com/watch?v=MpNRFYk-7Yk


 

 

 

 

 

 
 

 

 

• Huffman code is a prefix, variable length code that can achieve the shortest average code length 

for a given input alphabet with probability mass function (pmf). 
 

• In general, Huffman coding is a form of statistical coding as not all characters occur with the 

same frequency (Probability). 

 

• The process of finding the optimal code was algorithmized by Huffman. 

 
• A code is an optimal prefix code if it has the same average codeword length as a Huffman code 

for the given pmf. 
 

2/24/2019 

Huffman procedure is based on two observations regarding optimum prefix codes: 

 
1- Symbols that occur more frequently (have a higher probability of occurrence) will have shorter 

codewords than symbols that occur less frequently 

2- The two symbols that occur least frequently will have the same length. It is commonly used for 

lossless compressions 
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1.   Source symbols are listed in order of decreasing probability (frequency). 

2.   The two source symbols of lowest probability are assigned a 0 and 1(splitting stage ). 

3. These two source symbols are combined into a new source symbol with probability equal to the 

sum of the two original probabilities (The list of source symbols and therefore source statistics is 

thereby reduced in size by one). 

4.   The probability of the new symbol is placed in the list in accordance with its value 

 

The steps are repeated until we are left with a final list of source statistics of only two for which a 0 

and a 1 are assigned 
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Huffman Algorithm 
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Example 2: Find the Huffman code for the following source given the corresponding probabilities; 
 

S 𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 

𝑃(𝑥𝑖𝑖) 1/10 2/10 4/10 2/10 1/10 

 

 

 

 

 

 

 

 
𝐻  𝑆 = (𝟎𝟎. 𝟒𝟒)  × 𝑙𝑜𝑔𝟐𝟐   𝟏𝟏/𝟎𝟎. 𝟒𝟒 + 𝟐𝟐𝗑(𝟎𝟎. 𝟐𝟐)𝑙𝑜𝑔𝟐𝟐   𝟏𝟏/𝟎𝟎. 𝟐𝟐 + 𝟐𝟐𝗑(𝟎𝟎. 𝟏𝟏)𝑙𝑜𝑔𝟐𝟐   𝟏𝟏/𝟎𝟎. 𝟏𝟏 = 𝟐𝟐. 𝟏𝟏𝟐𝟐𝟏𝟏𝟗𝟗𝟑𝟑 

𝐿� = 𝟎𝟎. 𝟒𝟒𝗑𝟏𝟏 + 𝟎𝟎. 𝟐𝟐𝗑𝟐𝟐 + 𝟎𝟎. 𝟐𝟐𝗑𝟑𝟑 + 𝟎𝟎. 𝟏𝟏𝗑𝟒𝟒 + 𝟎𝟎. 𝟏𝟏𝗑𝟒𝟒 = 𝟐𝟐. 𝟐𝟐 > 𝐻  𝑆 

𝑪𝑪𝑪𝑪 = 
𝟑𝟑

 
𝟐𝟐.𝟐𝟐 

= 𝟏𝟏. 𝟑𝟑𝟔𝟔𝟒𝟒 η = 
𝐿_𝑚𝒊𝒊𝑛

 
𝐿 ̅ 

𝐾 

= 
𝐻(𝑆)

= 2.12193/2.2 = 96.45% 
𝐿 ̅ 
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𝜎𝟐𝟐 = � 𝑃𝑘 (𝑙𝑘−𝐿�)𝟐𝟐 = 𝟏𝟏. 𝟑𝟑𝟔𝟔 
𝑘=𝟏𝟏 
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Example 3: 
 

S 𝑃(𝑥𝑖𝑖) 
𝑆0 0.1 

𝑆1 0.2 

𝑆2 0.4 

𝑆3 0.2 

𝑆4 0.1 

𝐻  𝑆 = (𝟎𝟎. 𝟒𝟒)  × 𝑙𝑜𝑔𝟐𝟐   𝟏𝟏/𝟎𝟎. 𝟒𝟒 + 𝟐𝟐𝗑(𝟎𝟎. 𝟐𝟐)𝑙𝑜𝑔𝟐𝟐   𝟏𝟏/𝟎𝟎. 𝟐𝟐 + 𝟐𝟐𝗑(𝟎𝟎. 𝟏𝟏)𝑙𝑜𝑔𝟐𝟐   𝟏𝟏/𝟎𝟎. 𝟏𝟏 = 𝟐𝟐. 𝟏𝟏𝟐𝟐𝟏𝟏𝟗𝟗𝟑𝟑 

𝐿� = 𝟎𝟎. 𝟒𝟒𝗑𝟐𝟐 + 𝟎𝟎. 𝟐𝟐𝗑𝟐𝟐 + 𝟎𝟎. 𝟐𝟐𝗑𝟐𝟐 + 𝟎𝟎. 𝟏𝟏𝗑𝟑𝟑 + 𝟎𝟎. 𝟏𝟏𝗑𝟑𝟑 = 𝟐𝟐. 𝟐𝟐 > 𝐻  𝑆 

𝑪𝑪𝑪𝑪 = 
𝟑𝟑

 
𝟐𝟐.𝟐𝟐 

= 𝟏𝟏. 𝟑𝟑𝟔𝟔𝟒𝟒 η = 
𝐿_𝑚𝒊𝒊𝑛

 
𝐿 ̅ 

𝐾 

= 
𝐻(𝑆)

= 2.12193/2.2 = 96.45% 
𝐿 ̅ 

𝜎𝟐𝟐 = � 𝑃𝑘 (𝑙𝑘−𝐿�)𝟐𝟐 = 𝟎𝟎. 𝟏𝟏𝟔𝟔 
𝑘=𝟏𝟏 

• Hence, to obtain a minimum variance Huffman code, we always put the combined symbol as high in the list 

as possible 
 
 

2/24/2019 

Alternative solution: 
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Homework 4: Consider the following short text 

Eerie eyes seen near lake 

Build the Huffman code to encode the text 

 
Homework 5: Source transmitted symbols with probability as shown in table below. Find 

corresponding efficiency. 
 

 

S 𝑃(𝑥𝑖𝑖) 
𝑆1 0.3 

𝑆2 0.25 

𝑆3 0.2 

𝑆4 0.12 

𝑆5 0.08 

𝑆5 0.05 
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Lecture 6: Source Coding  Huffman Code 

 



𝑘=𝟏𝟏 

 

 

 

 

 

 

 

 

Huffman vs. Shannon 
 

 

�𝐿 =  ∑𝐾 𝑃𝑘 𝑙𝑘   , �𝐿 =2x(0.235+0.265+0.176)+3x(0.147)+4x (0.118+0.058)= 2.47 bits/symbol 
 

The average code length is less than that of Shannon Fano code, Hence Huffman is optimum, but 

Shannon is suboptimal 
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Lecture 6: Source Coding  Huffman vs. Shannon 

 

S Freq. P 

A 9 0.265 

B 8 0.235 

C 6 0.176 

D 5 0.147 

E 4 0.118 

F 2 0.059 

 

Huffman 

Code 

Shannon 

Code 

01 00 

10 01 

11 100 

001 101 

0000 110 

0001 111 

 



 

 

 

 

 

 

 

In applications where the alphabet size is large; 𝑃𝑚𝑎𝗑 is generally quite small, and the amount of 

deviation of the entropy from the average code length ( or in terms of a percentage of the rate) is 

quite small. However, in cases where the alphabet is small and the probability of occurrence of the 

different letters is skewed, the value of 𝑃𝑚𝑎𝗑 can be quite large and the Huffman code can become 

rather inefficient when compared to the entropy. 

 
Ex: Find the Huffman code for the following source given the corresponding probabilities 

 

 

 

 

 

𝐻  𝑆 = (𝟎𝟎. 𝟎𝟎)  × 𝑙𝑜𝑔𝟐𝟐   𝟏𝟏/𝟎𝟎. 𝟎𝟎 + (𝟎𝟎. 𝟎𝟎𝟐𝟐)𝑙𝑜𝑔𝟐𝟐   𝟏𝟏/𝟎𝟎. 𝟎𝟎𝟐𝟐 + (𝟎𝟎. 𝟏𝟏𝟎𝟎)𝑙𝑜𝑔𝟐𝟐   𝟏𝟏/𝟎𝟎. 𝟏𝟏𝟎𝟎 = 𝟎𝟎. 𝟎𝟎𝟏𝟏𝟔𝟔 𝑏𝒊𝒊𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

𝐿� = 𝟎𝟎. 𝟎𝟎𝗑𝟏𝟏 + 𝟎𝟎. 𝟎𝟎𝟐𝟐𝗑𝟐𝟐 + 𝟎𝟎. 𝟏𝟏𝟎𝟎𝗑𝟐𝟐 = 𝟏𝟏. 𝟐𝟐 𝑏𝒊𝒊𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 
There is a big difference between the average code length and the entropy (Code Redundancy), 

ρ= �𝐿 - 𝐻  𝑆 = 0.384 bits/symbol 
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Lecture 6: Source Coding  Extended Huffman Code 

 



𝒊𝒊=𝟏𝟏 

 

 

 

 

 

 

 

We can reduce the rate (average length) by grouping (blocking)symbols together which is called 

 

Extended (Block) Huffman Code 

-Consider a source S that emits a sequence of letters [s1 , s2 , s3 , … Sm] 

-Each element of the sequence is generated independently 

-The entropy for this source is given by 𝐻 𝑆 = ∑𝑁 𝑝 
 

𝑠𝒊𝒊 
𝑙𝑜𝑔 

𝟏𝟏 
𝟐𝟐 𝑝  𝑠𝒊𝒊 

-One can generate a Huffman code for this source with rate R (In data compression it is bits per symbol like the 

average length not bits per second as in communication) such that 𝐻 𝑆 ≤ 𝘙 ≤ 𝐻 𝑆 + 𝟏𝟏 
 

-Encode the sequence by generating one codeword for every n symbols, hence there are mn 

combinations of n symbols 

-Denote the rate for the new source as 𝑅(𝑛) , hence 𝐻(𝑆(𝑛)) ≤ 𝑅(𝑛) ≤ 𝐻(𝑆(𝑛)) +1 

𝑅(𝑛) is the number of bits required to code n symbols together. Therefore, the number of bits required 

per symbol, R, is given by 

𝑅 ≤ 𝑅(𝑛)/𝑛 
𝐻(𝑆(𝑛)) 

≤ 
𝑅  𝑛

 ≤ 
𝐻(𝑆(𝑛)) 

+ 
1 

𝑛 𝑛 𝑛 𝑛 
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Example 4: Find the extended Huffman code for the following source given the corresponding 

probabilities by blocking every two symbols. 

 

 

 

Solution: 

-m=3, n=2, the number of possible symbol pairs or the extended 

symbols are 𝟑𝟑𝟐𝟐=9 

-The probability of each extended symbol is calculated by 

multiplying the probabilities of the original single items together 

-Follow the steps of getting Huffman code, you get the code in 

that table 

 

𝐻  𝑆 = (𝟎𝟎. 𝟎𝟎)  × 𝑙𝑜𝑔𝟐𝟐   𝟏𝟏/𝟎𝟎. 𝟎𝟎 + (𝟎𝟎. 𝟎𝟎𝟐𝟐)𝑙𝑜𝑔𝟐𝟐   𝟏𝟏/𝟎𝟎. 𝟎𝟎𝟐𝟐 + (𝟎𝟎. 𝟏𝟏𝟎𝟎)𝑙𝑜𝑔𝟐𝟐   𝟏𝟏/𝟎𝟎. 𝟏𝟏𝟎𝟎 = 𝟎𝟎. 𝟎𝟎𝟏𝟏𝟔𝟔 𝑏𝒊𝒊𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

𝐿𝑒𝗑𝑡  = 𝟏𝟏. 𝟕𝟕𝟐𝟐𝟐𝟐𝟎𝟎  𝑏𝒊𝒊𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 
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Extended Symbol Probability Model Huffman Code 

𝑆1𝑆1 0.64 0 

𝑆1𝑆2 0.016 10101 

𝑆1𝑆3 0.144 11 

𝑆2𝑆1 0.016 101000 

𝑆2𝑆2 0.0004 10100101 

𝑆2𝑆3 0.0036 1010011 

𝑆3𝑆1 0.144 100 

𝑆3𝑆2 0.0036 10100100 

𝑆3𝑆3 0.0324 1011 

 



Each symbol in the extended alphabet corresponds to two symbols from the original alphabet 

𝐿𝑒𝗑𝑡 = 
𝟏𝟏. 𝟕𝟕𝟐𝟐𝟐𝟐𝟎𝟎 

𝟐𝟐 
= 𝟎𝟎. 𝟎𝟎𝟔𝟔𝟏𝟏 𝑏𝒊𝒊𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 

Redundancy = 0.0045 bits/symbol 

There is no big difference between the average code length and the entropy, 
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Hence, one can see that by encoding the output of the source in longer 

blocks of symbols can guarantee a closer rate to the entropy 
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But as we block more and more symbols together, the size of the alphabet 

grows exponentially, and the Huffman coding scheme becomes impractical 
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Lecture Outlines : 
 

 

 

• Introduction 

• Error detection codes 

• Error detection codes / parity codes 

• Error correction codes 

• Error correction codes / Basic definitions 

• Error Correction Codes / Hamming Codes 

• Error Correction Codes / Cyclic Codes 
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Lecture 6: Channel Coding Introduction 
 
 

 

 

Block Codes In block codes, the encoder takes in k information or message bits and produces a 

codeword of length n =k + r. Since k + r > k, the quantity r represents the number of extra bits 

(redundancy) added. This would be referred to as an (n, k ) linear code. 

𝑛 = 𝑘 + 𝑟 
𝑘: 𝑏𝒃𝒃𝑡 𝒃𝒃𝑛 𝑑𝑎𝑡𝑎 
𝑟: 𝑟𝑢𝑑𝑎𝑛𝑑𝑎𝑛𝑐 𝑏𝒃𝒃𝑡 
𝑛 = 𝑐𝑜𝑑𝑒𝒄𝒄𝑜𝑟𝑑 𝑏𝒃𝒃𝑡 

k information bit Codeword of length 𝑘 + 𝑟 
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Channel Coding: To ensure reliable communications, techniques have been developed that allow bit 

errors to be detected and corrected. The process of error detection and correction involves adding extra 

redundant bits to the data to be transmitted. This process is generally referred to as channel coding. 

Channel coding methods fall into to two separate categories: 

• Error detection codes: only have the ability to confirm that bit error(s) has occurred, however they 

cannot tell you which bit was in error. To fix the error, the receiver must request a retransmission. 

•  Error correcting codes or forward error correction (FEC) codes: have the ability to detect some bit 

errors and fix them without requiring a retransmission. 
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Lecture 6: Channel Coding Introduction 
 

 

Example 1: Linear block code (7,4) with k= 4 and k + r = 7 

 

 

 

 

A key point about channel coding is that there is a cost to be paid of increasing reliability. The extra n 

bits added by encoding result in: 

 
• Larger file sizes for storage. 

• Higher required transmission data rates. 

 

This cost is represented by the code rate. The code rate 𝘙𝑐 is the ratio of the number of information bits k 

to the number of bits in the codeword k + r. 

 
𝘙𝑐 = 𝑘/𝑛 

𝑛 = 𝑘 + 𝑟 

 
 
 

4 

k bits (information or message bit) r bits (add redundancy) 

Message Code words 

(0 0 0 0) (0 0 0 0 0 0 0) 

(0 0 0 1) (1 0 1 0 0 0 1) 

(0 0 1 0) (1 1 1 0 0 1 0) 
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Lecture 6: Channel Coding Error detection codes 
 
 

 

Simple Error Detection Codes: 

Parity codes The simplest kind of error-detection code is the parity code. To construct an even-parity 

code, add a parity bit such that the total number of 1’s is even. 

 

 

 
 

Parity check code (n , k) 

𝘙𝑐 = 𝑘/(𝑘 + 𝟏𝟏) 
 

1-bit parity codes can detect single bit errors, but they do not detect 2 bit errors. 

Probability (detecting errors)= Probability (odd number of errors) and 

Probability (undetecting errors)= Probability (even number of errors). 
 

 

5 

Information bits Even parity code Odd parity code 

000 000 0 000 1 

001 001 1 001 0 

010 010 1 010 0 

011 011 0 011 1 

 

Example 2: code (8,7) 

That is mean n = 8bit, k = 7bit, and r = 8 – 7 = 1bit 

𝘙𝑐 = 𝑘/𝑛 = 𝟕𝟕/𝟖𝟖 
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Example 3: Parity check code of k=7 bit. Calculate P (undetected error) and P (detected error) 

Solution: 
P (undetect error) = ∑ 𝐶𝑛𝑝𝑘(𝟏𝟏 − 𝑝𝑘) = 𝐶𝟖𝟖𝑝𝟐𝟐(𝟏𝟏 − 𝑝)𝟔𝟔+𝐶𝟖𝟖𝑝𝟒𝟒(𝟏𝟏 − 𝑝)𝟒𝟒+𝐶𝟖𝟖𝑝𝟔𝟔(𝟏𝟏 − 𝑝)𝟐𝟐+𝐶𝟖𝟖𝑝𝟖𝟖 ≈ 

𝑘 

28x𝟏𝟏𝟏𝟏−𝟒𝟒 
𝟐𝟐 𝟒𝟒 𝟔𝟔 𝟖𝟖 

The probability of detected errors will be: 
P (detect error) = ∑ 𝐶𝑛𝑝𝑘(𝟏𝟏 − 𝑝𝑘) = 𝐶𝟖𝟖𝑝𝟏𝟏(𝟏𝟏 − 𝑝)𝟕𝟕+𝐶𝟖𝟖𝑝𝟑𝟑(𝟏𝟏 − 𝑝)𝟓𝟓+𝐶𝟖𝟖𝑝𝟓𝟓(𝟏𝟏 − 𝑝)𝟑𝟑+𝐶𝟖𝟖𝑝𝟕𝟕 (𝟏𝟏 − 𝑝) ≈ 

𝑘 

8𝗑𝟏𝟏𝟏𝟏−𝟑𝟑 
𝟏𝟏 𝟑𝟑 𝟓𝟓 𝟕𝟕 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Homework1: assume there are n=12bits in a codeword (packet). Probability of error in a single bit 

transmission 𝑝𝑏=𝟏𝟏𝟏𝟏−𝟑𝟑. Find the probability of error-detection failure. 
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To implement these parity generators, simple Ex-OR gates are used at TX and RX as shown below 
 

 

 

 

 

 

 

 

 

 

 

Information 

bits 

Even 

parity code 

1010111 1 

0110101 0 
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Excersise 1: detect error in the received code word (use parity check code (8,7) then find data words. 

𝐶𝟏𝟏  = [𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏] 𝐶𝟐𝟐= [𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏] 𝐶𝟑𝟑= [𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏] 
Solution: 

• In code 𝐶𝟏𝟏  number of ones is even there is no error, data is 0101010 

• In code 𝐶𝟐𝟐  number of ones is odd there is error 

• In code 𝐶𝟑𝟑  number of ones is even there is no error, data is 1111011 
 

 

 

 

 

 

 

 

 

 

 
 

8 

Example 4: Parity cheak code (8,7) find code word if data 𝐼𝟏𝟏  = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏  , 𝐼𝟐𝟐  = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏  , 𝑎𝑛𝑑 𝐼𝟑𝟑  = 
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 . 

Solution: 

𝐶𝒃𝒃  = 𝐼𝒃𝒃: 𝑝𝑎𝑟𝒃𝒃𝑡𝑦 𝑏𝒃𝒃𝑡 
𝐶𝟏𝟏  = [𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏] 𝐶𝟐𝟐= [𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏] 𝐶𝟐𝟐= [𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏] 
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Systematic and nonsystematic codes: If information bits (a ‘s) are unchanged in their values and position at 

the transmitted codeword, then this code is said to be systematic. 

Input data [D]=[𝑎𝟏𝟏  𝑎𝟐𝟐  𝑎𝟑𝟑  … … … 𝑎𝑘], 

Output systematic (n,k) codeword is [C] = [𝑎𝟏𝟏  𝑎𝟐𝟐  𝑎𝟑𝟑  … … … 𝑎𝑘  𝑐𝟏𝟏  𝑐𝟐𝟐  𝑐𝟑𝟑  … … … 𝑐𝑟] 

However if data bits are spread or changed at the output codeword then, the code is said to be nonsystematic: 

Output nonsystematic (7,4) codeword is [C] = [𝑐𝟐𝟐  𝑎𝟏𝟏  𝑐𝟑𝟑  𝑎𝟐𝟐  𝑐𝟏𝟏  𝑎𝟒𝟒  𝑎𝟑𝟑] 

 

 
 

9 

Hamming distance: The ability of error detection and correction codes depends on this parameter. The 

Hamming  distance  between  two  codewords  𝑐𝒃𝒃   and  𝑐𝒋𝒋   is  denoted  by 𝑑𝒃𝒃𝒋𝒋  which  is  the  number  of  bits  that 

differ. For a binary (n,k) code with 𝟐𝟐𝑘 possible codeword then the minimum Hamming distance (HD) is the 

min) (𝑑𝒃𝒃𝒋𝒋) of course 𝑛 ≥ 𝑑𝒃𝒃𝒋𝒋≥ 𝟏𝟏 

Example 5: Find the Hamming distance between the two codewords: 

𝐶𝟏𝟏  = [𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏] 𝑎𝑛𝑑 𝐶𝟐𝟐= [𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏] . 

Solution: Here, the number of bits that differ is 2, hence 𝑑𝟏𝟏𝟐𝟐  = 𝟐𝟐 
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Homework 2: Find the minimum Hamming distance for the 3 codewords. 

𝐶𝟏𝟏  = [𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏] ,  𝐶𝟐𝟐= 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 , 𝐶𝟐𝟐 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

Hamming weight:  This is the number of 1’s in the non zero codeword  𝑐𝒃𝒃.  It is denoted by  𝒄𝒄𝒃𝒃. As will be shown 

later, and for linear codes,  𝒄𝒄𝑚𝒃𝒃𝑛= 𝐻𝐷 = 𝑚𝒃𝒃𝑛( 𝑑𝒃𝒃𝒋𝒋). This simplifies the calculation of HD. As an example 5, 

Example 6:  If  𝐶𝟏𝟏  = [𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏] , then  𝒄𝒄𝒃𝒃  = 3,  for  𝐶𝟐𝟐= 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏  , then  𝒄𝒄𝒃𝒃  = 2 and so on. 

Linear and non Linear codes: when the parity bits are obtained from a linear function of the k information bits 

then the code is said to be linear, otherwise it is a nonlinear code. 
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11 2/24/2019 

Hamming Bound: The purpose of Hamming bound is either 

1) to choose the number of parity bits ( r) so that a certain error correction capability is obtained. Or 

2) to find the error correction capability (t) if the number of parity bits (r ) is known for binary codes, this is 

given by: 

𝟐𝟐𝑛−𝑘 = 𝟐𝟐𝑟  ∑𝑡 𝒋𝒋=𝟏𝟏 𝒋𝒋 𝐶𝑛 

where t is the number of corrected bits. 
𝐻𝐷 − 𝟏𝟏 

𝑡 = 𝒃𝒃𝑛𝑡[ 
𝟐𝟐 

] 

𝑛𝑜. 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑏𝒃𝒃𝑡 = 𝐻𝐷 − 𝟏𝟏 

Example 7: for a single correction code with k=4 find the no. of parity bits that should be added. 

Solution: 

𝟐𝟐𝑟  ∑𝟏𝟏 𝒋𝒋=𝟏𝟏 𝒋𝒋 𝐶𝟒𝟒+𝑟 = 𝐶𝟒𝟒+𝑟 + 𝐶𝟒𝟒+𝑟 This gives 2r1+(4+r) and the minimum r is r=3 𝟏𝟏 𝟏𝟏 

( take minimum r to have max code efficiency). This is the (7,4) code. the code is said to be perfect code. 

Homework 3: if k=5 and up to 3 errors are to be corrected, find the no. of check bits that should be added. 



𝒃𝒃 

Information Theory / CE231 Lecturer Ali M. Alsahlany 

Lecture 6: Channel Coding Error correction codes / Basic definitions 
 

 

Excersise 2: 𝐼𝑓 𝐶𝑜𝑑𝑒 𝑜𝑓 𝑡 = 𝟐𝟐 , 𝑛 = 𝟑𝟑𝟏𝟏  𝑓𝒃𝒃𝑛𝑑  𝑘 
Solution: 𝑛 = 𝟑𝟑𝟏𝟏 𝑘 =? 𝑟 =? 

 
 

𝟐𝟐𝑟  ∑𝑡 𝐶𝑛 
𝒋𝒋=𝟏𝟏 𝒋𝒋 

𝟐𝟐𝑟   𝐶𝟑𝟑𝟏𝟏  + 𝐶𝟑𝟑𝟏𝟏  + 𝐶𝟑𝟑𝟏𝟏
 

𝟏𝟏 𝟏𝟏 𝟐𝟐 

𝟐𝟐𝑟  𝟏𝟏 + 𝟑𝟑𝟏𝟏 + 
𝟑𝟑𝟏𝟏∗𝟑𝟑𝟏𝟏

 
𝟐𝟐 

𝟐𝟐𝑟  𝟒𝟒𝟒𝟒𝟕𝟕 ⇛⇛ 𝑟  𝟖𝟖. 𝟒𝟒𝟓𝟓 
n=𝟑𝟑𝟏𝟏 r =𝟒𝟒 k=22bit 

Code (31,22) 

𝑡 = 𝟐𝟐 ⇛⇛ 𝑡 = 𝒃𝒃𝑛𝑡 
𝐻𝐷−𝟏𝟏 

𝟐𝟐 
⇛⇛ 𝐻𝐷 = 𝟓𝟓 

No. of detected error= 𝐻𝐷 − 𝟏𝟏 = 𝟒𝟒𝑏𝒃𝒃𝑡 
𝑡 

𝑃  𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑟𝑟𝑜𝑟 =  � 𝐶𝑛 𝑃𝒃𝒃  𝟏𝟏 − 𝑃  𝑛−𝒃𝒃 
𝒃𝒃=𝟏𝟏 

𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑟𝑟𝑜𝑟 = 𝐶𝟑𝟑𝟏𝟏𝑃𝟏𝟏 𝟏𝟏 − 𝑃 𝟑𝟑𝟏𝟏 + 𝐶𝟑𝟑𝟏𝟏𝑃𝟏𝟏 𝟏𝟏 − 𝑃 𝟑𝟑𝟏𝟏 + 𝐶𝟑𝟑𝟏𝟏𝑃𝟐𝟐 𝟏𝟏 − 𝑃 𝟐𝟐𝟒𝟒 

2/24/2019 

𝟏𝟏 𝟏𝟏 𝟐𝟐 

12 

Note: If the (n,k) codewords are trans. through a channel having error prob=pe, then prob. of decoding a 

correct word at the Rx for t-error correcting code will be: 

P(correct words)=p(no error)+p(1 error)+……..p(t errors) 

and prob(erroneous word)=1-P(correct word). 
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Example 8: Block code (7, 4) calculate no. detect and correct bit Hamming Distance (HD) and P(correct error). 

Solution:  𝑛 = 𝟕𝟕 𝑘 = 𝟒𝟒 𝑟 = 𝟕𝟕 − 𝟒𝟒 = 𝟑𝟑 𝑏𝒃𝒃𝑡 
𝟐𝟐𝑟  ∑𝑡 𝐶𝑛 

𝒋𝒋=𝟏𝟏 𝒋𝒋 
𝟐𝟐𝟑𝟑 𝐶𝟕𝟕 + 𝐶𝟕𝟕 + 𝐶𝟕𝟕 … … 

𝟏𝟏 𝟏𝟏 𝟐𝟐 
𝟔𝟔 ∗ 𝟕𝟕 

𝟖𝟖  𝟏𝟏 + 𝟕𝟕 + … … 
𝟐𝟐 

Taken two element that mean 𝑡 = 𝟏𝟏 
𝐻𝐷 − 𝟏𝟏 

𝑡 = 𝒃𝒃𝑛𝑡 
𝟐𝟐 

⇛⇛ 𝐻𝐷 = 𝟑𝟑 

 

No. of detected error= (𝐻𝐷 − 𝟏𝟏) = 𝟐𝟐 
𝑡 

𝑃  𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑟𝑟𝑜𝑟 =  � 𝐶𝑛 𝑃𝒃𝒃  𝟏𝟏 − 𝑃  𝑛−𝒃𝒃 
𝒃𝒃=𝟏𝟏 

𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑟𝑟𝑜𝑟 = 𝐶𝟕𝟕𝑃𝟏𝟏 𝟏𝟏 − 𝑃 𝟕𝟕 + 𝐶𝟕𝟕𝑃𝟏𝟏 𝟏𝟏 − 𝑃 𝟔𝟔 
𝟏𝟏 𝟏𝟏 

= 𝟏𝟏 ∗ 𝟏𝟏 𝟏𝟏 − 𝑃 𝟕𝟕+7P 𝟏𝟏 − 𝑃 𝟔𝟔 
Code rate = 

𝑘
 

𝑛 
= 

𝟒𝟒 

𝟕𝟕 
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One way to detect and correct errors is to add parity checks to the 

codewords: 

 

• If we add a parity check bit at the end of each codeword we can 

detect one (but not more) error per codeword. 

• By clever use of more than one parity bits, we can actually 

identify where the error occurred and thus also correct errors. 

• Designing ways to add as few parity bits as possible to correct 

and detect errors is a really hard problem. 

 

 

Richard W. Hamming (11.2.1915-7.1.1998) 
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Linear Block Codes: 

Only systematic binary codes will be described. The r parity bits are obtained using a linear function of the a’s 

data. Mathematically, this can be described by the set of equations: 

 

C1=h11a1+h12a2+h13a3+ ......... +h1kak 

C2=h21a1+h22a2+h23a3+ ......... +h2kak 

………………………………….. ……………..(1) 

Cr=hr1a1+hr2a2+hr3a3 + ......... +hrkak 

 
Where + is mod-2 addition (EX-OR), product is the AND multiplication and hij coefficients are binary variables 

for a binary coding. The complete output codeword can be written in matrix form as: 

 
[C]= [D][G] ………(1) , where: 

 

G= [ Ik : Pkxr ] which is kxn matrix. 

This matrix is called the generator matrix of the linear block code (LBC). Equation(1) can also be written in 

matrix form as: 
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………………………(2) 

 
where: [C]=[ a1 a2 a3 …….ak c1 c2 c3 …….cr] and [ H ] matrix is in fact related with [G] matrix by: 

[ H ]=[-PT : Ir], and for binary coding this – sign drops out. This rxn [H] matrix is called the parity check 

matrix. As will be shown, encoding can be done either using eq(1) ( [G] matrix ) or eq(2) ([H] matrix), but 
decoding is done using [H] matrix only. 
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[ H ] [C]T=[0] 

Example 9: a given binary (7,4) Hamming code with a parity check matrix: 

1000011 
0100101 𝐺 = 
0010110 

𝐺 = 𝐼𝑘𝑥𝑘: 𝑃𝑘𝑥𝑟 

0001111  
Find: 1) no. of error correction and detect capability 2) Code rate 3) encoder circuit 4) if data [1011] find 

codewords. 
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Solution: n=7 k=4 r=3  
𝟐𝟐𝑟  ∑𝑡 𝐶𝟕𝟕 

𝒋𝒋=𝟏𝟏 𝒋𝒋  
From example 8 

𝑡 = 1 , 𝐻𝐷 = 3 
𝑁𝑜. 𝑜𝑜𝑜 𝑑𝑒𝑡𝑒𝑐𝑡 𝑒𝑟𝑟𝑜𝑟 = 𝐻𝐷 − 1 = 2 

 
C = D . G 

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

𝐶 = [𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏]. 
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 

 

𝐶 = [1011010 ] 
 

C = [𝐼𝟏𝟏𝐼𝟐𝟐𝐼𝟑𝟑𝐼𝟒𝟒𝐶𝟏𝟏𝐶𝟐𝟐𝐶𝟑𝟑] 

𝐶𝟏𝟏=𝐼𝟐𝟐  ⊕ 𝐼𝟑𝟑  ⊕ 𝐼𝟒𝟒 

𝐶𝟐𝟐=𝐼𝟏𝟏  ⊕ 𝐼𝟑𝟑  ⊕ 𝐼𝟒𝟒 

𝐶𝟑𝟑=𝐼𝟏𝟏  ⊕ 𝐼𝟐𝟐  ⊕ 𝐼𝟒𝟒 
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𝐶𝟏𝟏=𝐼𝟐𝟐  ⊕ 𝐼𝟑𝟑  ⊕ 𝐼𝟒𝟒 

𝐶𝟐𝟐=𝐼𝟏𝟏  ⊕ 𝐼𝟑𝟑  ⊕ 𝐼𝟒𝟒 

𝐶𝟑𝟑=𝐼𝟏𝟏  ⊕ 𝐼𝟐𝟐  ⊕ 𝐼𝟒𝟒 

Codeword Truth Table: ⊕ ⊕ ⊕ 
 

𝐶𝟏𝟏 𝐶𝟐𝟐 𝐶𝟑𝟑 
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𝐼𝟒𝟒 𝐼𝟑𝟑 𝐼𝟐𝟐 𝐼𝟏𝟏 

2/24/2019 

Data 4 bits 

𝐼𝟏𝟏𝐼𝟐𝟐𝐼𝟑𝟑𝐼𝟒𝟒 

Codeword 7 bits 

𝐼𝟏𝟏𝐼𝟐𝟐𝐼𝟑𝟑𝐼𝟒𝟒𝐶𝟏𝟏𝐶𝟐𝟐𝐶𝟑𝟑 

0000 0000000 

0001 0001111 

0010 0010 

0011 0011 

… . … . 

… . … . 

1111 1111 
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If codeword [0011001] find received signal 

𝐻 = 𝑃𝑇 : 𝐼 
 
0111100 

𝑟𝑥𝑘 𝑟𝑥𝑟 1011010 
1101001 

 
 

 
 

 

 
𝐻. 𝐶𝑇= 

0111100 
1011010 
1101001 

It is correct codeword datat is [0011] 
 

 

 

 
 

 

If codeword [0010001] find received signal 
0 
0 

 
 
 
 

2/24/2019 

 

𝐻. 𝐶𝑇= 
0111100 1 1 
1011010 . 0 = 1 
1101001 0 1 

0 
1 

 
There is error 0010001 correct codeword [0011001] 
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𝐻 = 

0   

0   

1  0 
. 1 = 0 

0  0 
0   

1   
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Homework 4: The generator matrix of a LBC is given by: 

 

 

 

 
 

a-Use Hamming bound to find error correction capability. b-Find the parity check matrix. c-find the code 

table, Hamming weight and the error correction capability then compare with part(a). d-If the received 

word is [R]=[1011110011], find the corrected word at the Rx. 
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Cyclic Codes 

These are subclass from the linear block codes. The name cyclic comes from the fact that any cyclic shift 

of a codeword is another codeword. i.e, if [C1]=[0011010] is a codeword then [C2]=[0001101] is another 

codeword obtained from [C1] by a right circular shift. 

Cyclic codes can be classified into two types: 

Nonsystematic 

cyclic codes 

Systematic cyclic 

codes 

Generation of cyclic codes: 

A) nonsystematic Cyclic Codes: (Multiplicative ): 



Information Theory / CE231 Lecturer Ali M. Alsahlany 

Lecture 6: Channel Coding Error Correction Codes / Cyclic Codes 
 

 

Procedure: 

(1) For [D]=[a1 a2 ….. ak] data word, write the data word in terms of a power of a dummy variable x with 

a1 weighted as MSB (Most Significant Bit) and ak as LSB(Least Significant Bit). 
 

𝗑𝑘−𝟏𝟏 𝗑𝑘−𝟐 𝗑𝟐𝟐 𝗑𝟏𝟏 
𝗑𝟏𝟏 

a1 a2 ……. ak-2 ak-1 ak 
 

MSB LSB 

D(x)=ak+ak-1 x+ak-2 x
2+…….+a2 x

k-2+ a1 x
k-1 where ''+'' sign is mod-2 addition(Ex-OR) 

For example if [D]=[1 1 1  0 1], 

then D(x)=1+x2+x3+x4
 

and if D(x)= x6+x2+1 then [D]=[1000101] 

2) Multiply D(x) by what is called generator polynomial g(x) of order r=n-k. 

(3) The output codeword polynomial will be: 

C(x)=D(x) g(x) from which we can find the output codeword [C] 
 

22 2/24/2019 
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Example:  𝑔  𝗑 = 𝗑𝟑𝟑 + 𝗑 + 𝟏𝟏 
A. 

1. 𝐱𝐱𝐫𝐫 = 𝐱𝐱𝟑𝟑 
2. have 𝗑𝑟 , 1 

 
B. 

D=[ 1 0 1 1] 

𝐷  𝗑 = 𝟏𝟏 + 𝟏𝟏𝗑 + 𝟏𝟏𝗑𝟐𝟐 + 𝟏𝟏𝗑𝟑𝟑 
𝐷  𝗑 = 𝟏𝟏 + 𝟏𝟏𝗑 + 𝟏𝟏𝗑𝟑𝟑 

 
D=[1 0 0 0] 

𝐷  𝗑 = 𝗑𝟑𝟑 

LSB MSB 
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Example 10: Find codeword using nonsystematic cyclic code, if 𝑔  𝗑 = 𝗑𝟑𝟑 + 𝗑 + 𝟏𝟏and 𝐷 = [ 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟏𝟏] 
Solution: 

𝐺  𝗑 = 𝗑𝟑𝟑 + 𝗑 + 𝟏𝟏 
r=3 

𝑁 = 𝑘 + 𝑟 = 𝟒𝟒 + 𝟑𝟑 = 𝟕𝟕 

1. 2. 𝐷 = [ 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟏𝟏] 
𝐷 𝐱𝐱 = 𝟏𝟏 + 𝗑 ===> k=4 

Code (7,4) , code rate = 4/7 

𝐶(𝗑) =  𝐺(𝗑)𝐷(𝗑) 

= (𝗑 + 𝟏𝟏)(𝗑𝟑𝟑 + 𝗑 + 𝟏𝟏) 

= 𝗑𝟒𝟒 + 𝗑𝟐𝟐 + 𝗑 + 𝗑𝟑𝟑 + 𝗑 + 𝟏𝟏 

𝐶 𝗑 = [𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏] 

Homework 5: Find codeword using nonsystematic cyclic code, if 𝑔  𝗑 = 𝗑𝟒𝟒 + 𝗑𝟐𝟐 + 𝟏𝟏and 𝐷 = [ 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏] 
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	One way to detect and correct errors is to add parity checks to the codewords:
	• By clever use of more than one parity bits, we can actually identify where the error occurred and thus also correct errors.
	Only systematic binary codes will be described. The r parity bits are obtained using a linear function of the a’s data. Mathematically, this can be described by the set of equations:
	………………………………….. ……………..(1)
	Where + is mod-2 addition (EX-OR), product is the AND multiplication and hij coefficients are binary variables for a binary coding. The complete output codeword can be written in matrix form as:
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	matrix form as:
	………………………(2)
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	𝐻. 𝐶𝑇= (1)
	1011010 . 0 = 1
	0 (1)
	There is error 0010001 correct codeword [0011001]
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