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1.1 Introduction 

 

A matrix is an ordered rectangular array of numbers (or functions). For example, 

 

𝐴 = [
𝑥 4 3
4 3 𝑥
3 𝑥 4

] 

 

The numbers (or functions) are called the elements or the entries of the matrix. The 

horizontal lines of elements are said to constitute rows of the matrix and the vertical 

lines of elements are said to constitute columns of the matrix. 

1.2 order of the matrix 

A matrix having m rows and n columns is called a matrix of order m × n or simply 

m × n matrix (read as an m by n matrix). In the above example, we have A as a 

matrix of order 3 × 3 i.e., 3 × 3 matrix. In general, an m × n matrix has the following 

rectangular array: 

 

𝐴 = [𝑎𝑖𝑗]𝑚×𝑛 = [

𝑎11 𝑎12 𝑎13 …          𝑎1𝑛

𝑎21 𝑎22 𝑎23 …          𝑎2𝑛

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 …          𝑎𝑚𝑛

] 

 

The element, aij is an element lying in the ith row and jth column and is known as the 

(i, j)th element of A. The number of elements in an m × n matrix will be equal to mn. 

 

1.3 Types of matrices 

1. A matrix is said to be a row matrix if it has only one row 



2. A matrix is said to be a column matrix if it has only one column. 

3. A matrix in which the number of rows are equal to the number of columns, is 

said to be a square matrix. Thus, an m × n matrix is said to be a square matrix 

if m = n and is known as a square matrix of order ‘n’. 

4. A square matrix B = [bij]n×n is said to be a diagonal matrix if it’s all non-

diagonal elements are zero, that is a matrix B = [bij]n×n is said to be a diagonal 

matrix if bij = 0, when i ≠ j. 

5. A diagonal matrix is said to be a scalar matrix if its diagonal elements are 

equal, that is, a square matrix B = [bij]n×n is said to be a scalar matrix if  

bij = 0, when i ≠ j  

bij = k, when i = j, for some constant k. 

6. A square matrix in which elements in the diagonal are all 1 and rest are all 

zeroes is called an identity matrix.  

In other words, the square matrix A = [aij]n×n is an identity matrix, if aij = 1, 

when i = j and aij = 0, when i ≠ j.  

7.  A matrix is said to be zero matrix or null matrix if all its elements are zeroes. 

We denote zero matrix by O.  

8. Two matrices A = [aij] and B = [bij] are said to be equal if  

(a) they are of the same order, and  

(b) each element of A is equal to the corresponding element of B, that is, aij = 

bij for all i and j. 

 

1.4 Additon of Matrices Two matrices can be added if they are of the same order.  

1.5  Multiplication of Matrix by a Scalar If A = [aij] m×n is a matrix and k is a scalar, 

then kA is another matrix which is obtained by multiplying each element of A 

by a scalar k, i.e. kA = [kaij]m×n  



1.6 Negative of a Matrix The negative of a matrix A is denoted by –A. We define –

A = (–1)A.  

1.7 Multiplication of Matrices The multiplication of two matrices A and B is defined 

if the number of columns of A is equal to the number of rows of B. 

Let A = [aij] be an m × n matrix and B = [bjk] be an n × p matrix. Then the product 

of the matrices A and B is the matrix C of order m × p. To get the (i, k)th element cik 

of the matrix C, we take the ith row of A and kth column of B, multiply them 

elementwise and take the sum of all these products i.e., cik = ai1 b1k + ai2 b2k + ai3 b3k 

+ ... + ain bnk The matrix C = [cik]m×p is the product of A and B. 

Notes:  

1.  If AB is defined, then BA need not be defined.  

2.  If A, B are, respectively m × n, k × l matrices, then both AB and BA are 

defined if and only if n = k and l = m.  

3. If AB and BA are both defined, it is not necessary that AB = BA.  

4. If the product of two matrices is a zero matrix, it is not necessary that one of 

the matrices is a zero matrix.  

5. For three matrices A, B and C of the same order, if A = B, then AC = BC, but 

converse is not true.  

6. A. A = A2, A. A. A = A3, so on 

1.8 Transpose of a Matrix  

1. If A = [aij] be an m × n matrix, then the matrix obtained   by interchanging the 

rows and columns of A is called the transpose of A. Transpose of the matrix A is 

denoted by A′ or (AT). In other words, if A = [aij]m×n, then AT = [aji]n×m.  

2. Properties of transpose of the matrices For any matrices A and B of suitable orders, 

we have  



(i) (AT )T = A,  

(ii) (kA)T = kAT (where k is any constant)  

(iii) (A + B)T = AT + BT  

(iv) (AB)T = BT AT  

1.9 Symmetric Matrix and Skew Symmetric Matrix  

(i) A square matrix A = [aij] is said to be symmetric if AT = A, that is, aij = aji for all 

possible values of i and j. 

(ii) A square matrix A = [aij] is said to be skew symmetric matrix if AT = –A, that is 

aji = –aij for all possible values of i and j.  

Note : Diagonal elements of a skew symmetric matrix are zero.  

(iii) Theorem 1: For any square matrix A with real number entries, A + AT is a 

symmetric matrix and A – AT is a skew symmetric matrix.  

(iv) Theorem 2: Any square matrix A can be expressed as the sum of a symmetric 

matrix and a skew symmetric matrix, that is  

𝐴 =
(𝐴 + 𝐴𝑇)

2
+

(𝐴 − 𝐴𝑇)

2
 

1.10 Invertible Matrices  

(i) If A is a square matrix of order m × m, and if there exists another square matrix 

B of the same order m × m, such that AB = BA = Im , then, A is said to be invertible 

matrix and B is called the inverse matrix of A and it is denoted by A–1 .  

Note : 1. A rectangular matrix does not possess its inverse, since for the products 

BA and AB to be defined and to be equal, it is necessary that matrices A and B 

should be square matrices of the same order. 



 2. If B is the inverse of A, then A is also the inverse of B.  

(ii) Theorem 3: (Uniqueness of inverse) Inverse of a square matrix, if it exists, is 

unique.  

(iii) Theorem 4: If A and B are invertible matrices of same order, then (AB)–1 =  

B–1A–1. 

1.11 Inverse of a Matrix using Elementary Row or Column Operations  

To find A–1 using elementary row operations, write A = IA and apply a sequence of 

row operations on (A = IA) till we get, I = BA. The matrix B will be the inverse of 

A. Similarly, if we wish to find A–1 using column operations, then, write A = AI and 

apply a sequence of column operations on A = AI till we get, I = AB.  

Note: In case, after applying one or more elementary row (or column) operations on 

A = IA (or A = AI), if we obtain all zeros in one or more rows of the matrix A on 

L.H.S., then A–1 does not exist. 

Example 1: if [2x     3][
1 2

−3 0
]   

𝑥
8

   = 0, find the value of x. 

Solution: we have  [2x     3][
1 2

−3 0
]   

𝑥
8

   = 0             [2x -9    4x]   
𝑥
8

   = 0 

[2x2 -9x    32x] = 0            2x2 + 23x = 0            x(2x+23) = 0 

x = 0, x =-23/2 

Example 2: Express the matrix A as the sum of a symmetric and a skew symmetric 

matrix, where        

                                     𝐴 = [
2 4 −6
7 3 5
1 −2 4

] 



Solution: we have  

          𝐴 = [
2 4 −6
7 3 5
1 −2 4

]        𝑡ℎ𝑒𝑛     𝐴′ = [
2 7 1
4 3 −2

−6 5 4
]  

 

Hence     
𝐴+𝐴′

2
=

1

2
[

4 11 −5
11 6 3
−5 3 8

] = [

2 11/2 −5/2
11/2 3 3/2
−5/2 3/2 4

] 

 

And        
𝐴−𝐴′

2
=

1

2
[
0 −3 −7
3 0 7
7 −7 0

] = [

0 −3/2 −7/2
3/2 0 7/2
7/2 −7/2 0

] 

 

Therefore, 

 

𝐴 + 𝐴′

2
+

𝐴 − 𝐴′

2
=

[
 
 
 
 
 2

11

2
−

5

2
11

2
3

3

2

−
5

2

3

2
4 ]

 
 
 
 
 

+

[
 
 
 
 
 0 −

3

2
−

7

2
3

2
0

7

2
7

2
−

7

2
0 ]

 
 
 
 
 

                         

 

= [
2 4 −6
7 3 5
1 −2 4

] = 𝐴 

 



Example 3: if 𝐴 = [
1    3    2
2    0 −1
1    2    3

],  then show that A satisfies the equation 

A3–4A2–3A+11I = O. 

Solution: A2 = A × A =[
1    3    2
2    0 −1
1    2    3

] × [
1    3    2
2    0 −1
1    2    3

] 

 

= [
1 + 6 + 2    3 + 0 + 4    2 − 3 + 6
2 + 0 − 1    6 + 0 − 2    4 + 0 − 3
1 + 4 + 3    3 + 0 + 6    2 − 2 + 9

] 

 

= [
9    7    5
1    4    1
8    9    9

] 

And                    A3 = A2 × A = [
9    7    5
1    4    1
8    9    9

]  x [
1    3    2
2    0 −1
1    2    3

]   

 

                                               =  [
9 + 14 + 5    27 + 0 + 10    18 − 7 + 15
1 + 8 + 1    3 + 0 + 2    2 − 4 + 3
8 + 18 + 9    24 + 0 + 18    16 − 9 + 27

] 

 

                                               =  [
28    37    26
10    5    1
35    42    34

] 

 

 



Now                  A3–4A2–3A+11I  

      =  [
28    37    26
10    5    1
35    42    34

] − 4  [
9    7    5
1    4    1
8    9    9

] − 3 [
1    3    2
2    0 −1
1    2    3

]  + [
1    0    0
0    1    0
0    0    1

]   

 

      = [
28 − 36 − 3 + 11    37 − 28 − 9 + 0    26 − 20 − 6 + 0
10 − 4 − 6 + 0    5 − 16 + 0 + 11 1 − 4 + 3 + 0
35 − 32 − 3 + 0    24 − 36 − 6 + 0    34 − 36 − 9 + 11

]   

 

      = [
0    0    0
0    0    0
0    0    0

]  = 0 

 

Example 4: let A = [
2 3

−1 2
]. Then show that A2 – 4A + 7I = O. using this result 

calculate A5 also. 

Solution:  we have A2 = [
2 3

−1 2
] [

2 3
−1 2

] =  [
1 12

−4 1
], 

                               

                              −4A = [
−8 −12
4 −8

]  and 7I = [
7 0
0 7

] 

 

Therefore,     A2 – 4A + 7I = [
1 − 8 + 7 12 − 12 + 0

−4 + 4 + 0 1 − 8 + 7
] = [

0 0
0 0

] = 0 

 

                                      A2 = 4A – 7I 



Thus          A3 = A.A2 = A (4A – 7I) = 4 (4A – 7I) – 7A 

                         = 16A – 28I – 7A = 9A – 28I 

And so       A5 = A3 A2     

                                           = (9A – 28I) (4A – 7I)  

= 36A2 – 63A – 112A + 196I  

= 36 (4A – 7I) – 175A + 196I  

                                           = – 31A – 56I 

                                           = – 31[
2 3

−1 2
] – 56 [

1 0
0 1

] 

                                           = [
−118 −93
31 −118

] 
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FOURIER SERIES 

 

4.1. PERIODIC FUNCTIONS  

 

If the value of each ordinate f(x) repeats itself at equal intervals in the 

abscissa, then f(x) is said to be a periodic function.  

If f(x) = f (x + X) = f (x + 2 X) = .... then X is called the period of the function 

f(x).  

For example : sin x = sin (x + 2) = sin (x + 4 ) = ... so sin x is a periodic 

function with the period 2. This is also called sinusoidal periodic 

function. 

 

 

4.2. FOURIER SERIES  

Here we will express a non-sinusoidal periodic function into a 

fundamental and its harmonics.  



 
𝑎𝑜

2
+  𝑎1 cos 𝑥 + 𝑎2 cos 2𝑥 + 𝑎3 cos3 𝑥 + … . . +𝑎𝑛 cos

𝑛𝜋𝑥

𝐿
+ 𝑏1 sin 𝑥 +

𝑏2 sin 2𝑥 + 𝑏3 sin 3𝑥 + ⋯ + 𝑏𝑛 sin
𝑛𝜋𝑥

𝐿
 

= 𝑎0 + ∑ (𝑎𝑛 cos
𝑛𝜋𝑥

𝐿
+ 𝑏𝑛 sin

𝑛𝜋𝑥

𝐿
)

∞

𝑛=1

 

 

This period depends on length factor so the period is –L ≤ x ≤ L. if the 

period changed to angles when L equal π, so a series of sines and cosines 

of an angle and its multiples of the form –π ≤ x ≤ π.  

= 𝑎0 + ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin nx)

∞

𝑛=1

 

 

4.3. ADVANTAGES OF FOURIER SERIES  

1. Discontinuous function can be represented by Fourier series. Although 

derivatives of the discontinuous functions do not exist. (This is not true 

for Taylor’s series).  

2. The Fourier series is useful in expanding the periodic functions since 

outside the closed interval, there exists a periodic extension of the 

function.  



3. Expansion of an oscillating function by Fourier series gives all modes 

of oscillation (fundamental and all overtones) which is extremely useful 

in physics.  

4. Fourier series of a discontinuous function is not uniformly convergent 

at all points.  

5. Term by term integration of a convergent Fourier series is always valid, 

and it may be valid if the series is not convergent. However, term by term, 

differentiation of a Fourier series is not valid in most cases. 

 

4.4. DETERMINATION OF FOURIER COEFFICIENTS 

F(x) =  
𝑎𝑜

2
+  𝑎1 cos 𝑥 + 𝑎2 cos 2𝑥 +

𝑎3 cos3 𝑥 + … . . +𝑎𝑛 cos 𝑛𝑥 + 𝑏1 sin 𝑥 + 𝑏2 sin 2𝑥 + 𝑏3 sin 3𝑥 + ⋯ +

𝑏𝑛 sin nx     ……………… (1) 

 

 

 

 

 

 



(i) To find ao : Integrate both sides of (1) from x = 0 to x = 2 

∫ 𝑓(𝑥) 𝑑𝑥

2𝜋

0

=  
𝑎𝑜

2
∫  𝑑𝑥

2𝜋

0

+  𝑎1 ∫  

2𝜋

0

cos 𝑥 𝑑𝑥

+ 𝑎2 ∫  

2𝜋

0

cos 2𝑥 𝑑𝑥

+ … . . +𝑎𝑛 ∫  

2𝜋

0

cos 𝑛𝑥 𝑑𝑥 + 𝑏1 ∫  

2𝜋

0

sin 𝑥 𝑑𝑥

+ 𝑏2 ∫  

2𝜋

0

sin 2𝑥 𝑑𝑥 + 𝑏𝑛 ∫  

2𝜋

0

sin nx  𝑑𝑥 

 

            =  
𝑎𝑜

2
∫  𝑑𝑥

2𝜋

0
         (other integrals = 0) 

 

           ∫  𝑓(𝑥) 𝑑𝑥 = 
2𝜋

0

𝑎𝑜

2
2𝜋   then   𝑎𝑜 =  

1

2𝜋
 ∫ 𝑓(𝑥) 𝑑𝑥

2𝜋

0
 

 

 

 



(ii) To find an : Multiply each side of (1) by cos nx and integrate from x 

= 0 to x= 2 

∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

2𝜋

0

=  
𝑎𝑜

2
∫ 𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

2𝜋

0

+  𝑎1 ∫  𝑐𝑜𝑠𝑛𝑥

2𝜋

0

cos 𝑥 𝑑𝑥 … . . +𝑎𝑛 ∫  

2𝜋

0

𝑐𝑜𝑠2 𝑛𝑥 𝑑𝑥 + 𝑏1 ∫  

2𝜋

0

sin 𝑥𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

+ 𝑏2 ∫  

2𝜋

0

sin 2𝑥𝑐𝑜𝑠𝑛𝑥 𝑑𝑥 + 𝑏𝑛 ∫  

2𝜋

0

𝑠𝑖𝑛2 nx  𝑑𝑥 

=𝑎𝑛 ∫  
2𝜋

0
𝑐𝑜𝑠2 𝑛𝑥 𝑑𝑥 = 𝑎𝑛𝜋      (Other integrals = 0) 

𝑎𝑛 =  
1

𝜋
 ∫ 𝑓(𝑥) cos 𝑛𝑥  𝑑𝑥

2𝜋

0

 

 

 

 

 

 

 

 



(iii) To find bn : Multiply each side of (1) by sin nx and integrate from x 

= 0 to x = 2. 

∫ 𝑓(𝑥)𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

2𝜋

0

=  
𝑎𝑜

2
∫ 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

2𝜋

0

+  𝑎1 ∫  𝑠𝑖𝑛𝑛𝑥

2𝜋

0

cos 𝑥 𝑑𝑥 … . . +𝑎𝑛 ∫  

2𝜋

0

𝑐𝑜𝑠 𝑛𝑥 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥 + 𝑏1 ∫  

2𝜋

0

sin 𝑥𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

+ 𝑏𝑛 ∫  

2𝜋

0

𝑠𝑖𝑛2 nx  𝑑𝑥 

=𝑏𝑛 ∫  
2𝜋

0
𝑠𝑖𝑛2 𝑛𝑥 𝑑𝑥 = 𝑏𝑛𝜋                 (Other integrals = 0) 

𝑏𝑛 =  
1

𝜋
 ∫ 𝑓(𝑥) sin 𝑛𝑥  𝑑𝑥

2𝜋

0

 

 

 

 

 

 

 

 

 



Example 1: Find the Fourier series for the periodic function shown  

 

Solution:  

First have to find the function from                              

straight line equation y= 𝑚 𝑥 while 

 𝑚 =  
𝑦2−𝑦1

𝑥2−𝑥1
 

𝑦 = 
𝜋−0

2𝜋−𝑜
 𝑥      then     𝑦 =  

𝑥

2
  = 𝑓(𝑥)               

Now, have to find Fourier coefficients  𝑎𝑜 , 𝑎𝑛, 𝑏𝑛 

1. 𝑎𝑜 =  
1

2𝜋
 ∫ 𝑓(𝑥) 𝑑𝑥

2𝜋

0
 =

1

2𝜋
 ∫

𝑥

2
 𝑑𝑥

2𝜋

0
 =

1

4𝜋
 |

𝑥2

2
|0
2𝜋 

         𝑎𝑜 =  
1

2𝜋
 [4𝜋2 − 0]    then          𝒂𝒐 =  

𝝅

𝟐
  

 

2. 𝑎𝑛 =  
1

𝜋
 ∫ 𝑓(𝑥) cos 𝑛𝑥  𝑑𝑥

2𝜋

0
 =  

1

𝜋
 ∫

𝑥

2
 cos 𝑛𝑥  𝑑𝑥

2𝜋

0
  

 

𝑎𝑛 =  
1

𝜋
 [

𝑥 sin 𝑛𝑥

2𝑛
|0
2𝜋 −

1

2𝑛
∫ sin 𝑛𝑥  𝑑𝑥]

2𝜋

0

 

 

 

 

Integration of two functions is 

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 −  ∫ 𝑣. 𝑑𝑢 

𝑢 =  
𝑥

2
                𝑑𝑣 = cos 𝑛𝑥 𝑑𝑥  

𝑑𝑢 =
1

2
𝑑𝑥                𝑣 =

𝑠𝑖𝑛𝑛𝑥

𝑛
                       

 

 

 

 



𝑎𝑛 =  
1

2𝑛𝜋
 [2𝜋 sin 2𝑛𝜋 − 2𝜋 sin 0] −

1

2𝑛
[
−cos 𝑛2𝜋

𝑛
+

cos 0

𝑛
] 

 

𝒂𝒏 = 𝟎 

 

 

3. 𝑏𝑛 =  
1

𝜋
 ∫ 𝑓(𝑥) sin 𝑛𝑥  𝑑𝑥

2𝜋

0
 =  

1

𝜋
 ∫

𝑥

2
 sin 𝑛𝑥  𝑑𝑥

2𝜋

0
  

 

𝑏𝑛 =  
1

𝜋
 [

−𝑥 cos 𝑛𝑥

2𝑛
|0
2𝜋 +

1

2𝑛
∫ cos 𝑛𝑥  𝑑𝑥]

2𝜋

0

 

 

𝑏𝑛 =  
1

2𝑛𝜋
 [−2𝜋 cos 2𝑛𝜋 − 2𝜋 cos 0] +

1

2𝑛
[
sin 𝑛2𝜋

𝑛
−

sin 0

𝑛
] 

 

 

         𝒃𝒏 =  
−𝟏

𝒏
 

 

Now, write then general equation of Fourier series 

 

             𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)∞
𝑛=1   

 Substitute Fourier coefficients into the general equation and determine  

first three series 

𝑓(𝑥) =
𝜋

2
+ ∑ (0 cos 𝑛𝑥 −

1

𝑛
 sin 𝑛𝑥)

∞

𝑛=1

=
𝜋

2
− [sin 𝑥 +

1

2
sin 2𝑥 +

1

3
sin 3𝑥] 

0                       0                                          -1                   1 

Integration of two functions is 

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 −  ∫ 𝑣. 𝑑𝑢 

𝑢 =  
𝑥

2
                𝑑𝑣 = sin 𝑛𝑥 𝑑𝑥  

𝑑𝑢 =
1

2
𝑑𝑥                𝑣 = −

cos 𝑛𝑥

𝑛
                       

 

 

 

 



Example 2: Find the Fourier series for the periodic function   𝑓𝑥 = 3 

0 ≤ 𝑥 ≤ 2𝜋 

Solution:   have to find Fourier coefficients  𝑎𝑜 , 𝑎𝑛 , 𝑏𝑛 

1. 𝑎𝑜 =  
1

2𝜋
 ∫ 𝑓(𝑥) 𝑑𝑥

2𝜋

0
 =

1

2𝜋
 ∫ 3 𝑑𝑥

2𝜋

0
 =

1

2𝜋
 |3𝑥|0

2𝜋 

 

𝑎𝑜 =  
1

2𝜋
[6𝜋 − 0]   then   𝒂𝒐 = 𝟑 

 

2. 𝑎𝑛 =  
1

𝜋
 ∫ 𝑓(𝑥) cos 𝑛𝑥  𝑑𝑥

2𝜋

0
 =  

1

𝜋
 ∫ 3 cos 𝑛𝑥  𝑑𝑥

2𝜋

0
 

 

=  
1

𝜋
 ∫ 3 cos 𝑛𝑥  𝑑𝑥

2𝜋

0
=  

3

𝜋
 | sin

𝑛𝑥

𝑛
|0
2𝜋  

 

= 
3

𝜋
[

sin 2𝜋

𝑛
−

sin 0

𝑛
] 

 

 

𝒂𝒏 = 𝟎 

 

3. 𝑏𝑛 =  
1

𝜋
 ∫ 𝑓(𝑥) sin 𝑛𝑥  𝑑𝑥

2𝜋

0
 =  

1

𝜋
 ∫ 3 sin 𝑛𝑥  𝑑𝑥

2𝜋

0
 

 

=  
1

𝜋
 ∫ 3 sin 𝑛𝑥  𝑑𝑥

2𝜋

0
=  

3

𝜋
 |

− cos 𝑛𝑥

𝑛
|0
2𝜋 =  

3

𝜋
[−

cos 2𝜋

𝑛
+

cos 0

𝑛
] 

 

=  
3

𝜋
[−

1

𝑛
+

1

𝑛
]       then   𝒃𝒏 = 𝟎 

 

Now, write then general equation of Fourier series 

 

             𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)∞
𝑛=1   

0                    0 



  

Substitute Fourier coefficients into the general equation and determine  

first three series 

𝑓(𝑥) = 3 + ∑ (0 cos 𝑛𝑥 + 0 sin 𝑛𝑥)∞
𝑛=1   then 𝑓(𝑥) = 3 

 

Example 3: Find the Fourier series for the periodic function    

𝑓(𝑥) =  {
1          0 ≤ 𝑥 ≤ 𝜋
2        𝜋 ≤ 𝑥 ≤ 2𝜋

  

 

Solution:   have to find Fourier coefficients  𝑎𝑜 , 𝑎𝑛 , 𝑏𝑛 

1. 𝑎𝑜 =  
1

2𝜋
 ∫ 𝑓(𝑥) 𝑑𝑥

2𝜋

0
 =

1

2𝜋
 [∫ 1 𝑑𝑥 + ∫ 2 𝑑𝑥] 

2𝜋

𝜋
 

𝜋

0
 

 

=
1

2𝜋
 [|𝑥|0

2𝜋 + |2𝑥|𝜋
2𝜋] 

 

𝒂𝒐 =  
𝟑

𝟐
 

 

2. 𝑎𝑛 =  
1

𝜋
 ∫ 𝑓(𝑥) cos 𝑛𝑥  𝑑𝑥

2𝜋

0
 =  

1

𝜋
 ∫ 1 cos 𝑛𝑥  𝑑𝑥

𝜋

0
+

∫ 2 cos 𝑛𝑥  𝑑𝑥] 
2𝜋

𝜋
 

 

𝑎𝑛 =  
1

𝜋
[
sin 𝑛𝑥

𝑛
|0
2𝜋 + |2

sin 𝑛𝑥
𝑛

|𝜋
2𝜋] 

 

 

sin 𝑛𝑥 = 0   𝑓𝑜𝑟 𝑛 = 1,2,3,4 … …. 

 

    0                                0 



Then  𝒂𝒏 = 𝟎 

 

3. 𝑏𝑛 =  
1

𝜋
 ∫ 𝑓(𝑥) sin 𝑛𝑥  𝑑𝑥

2𝜋

0
 =  

1

𝜋
 ∫ 1 sin 𝑛𝑥  𝑑𝑥

𝜋

0
+

∫ 2 sin 𝑛𝑥  𝑑𝑥] 
2𝜋

𝜋
 

 

𝑏𝑛 =  
1

𝜋
[
−cos 𝑛𝑥

𝑛
|0
2𝜋 + |2

−cos 𝑛𝑥
𝑛

|𝜋
2𝜋] 

𝑏𝑛 =  
1

𝜋
[ 

−cos 𝑛𝜋

𝑛
+  

cos 0 

𝑛
−

2 cos 𝑛2𝜋

𝑛
+  

2 cos 𝑛𝜋

𝑛
] 

  

𝑏𝑛 =  
1

𝜋𝑛
[−cos 𝑛𝜋 + 1 − 2 + 2 cos 𝑛𝜋] 

 

𝑏𝑛 =  
1

𝜋𝑛
[cos 𝑛𝜋 − 1]  

 

cos 𝜋 = −1  while cosn 𝜋 = (−1)𝑛   

    

Therefore  𝑏𝑛 =
(−1)𝑛−1

𝜋𝑛
  

 

(−1)𝑛has two possible solutions depends on the value of n 

which could be even or odd number. 𝒃𝒏 =  
−𝟐

𝝅𝒏
 

 

Now, write then general equation of Fourier series 

 

             𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)∞
𝑛=1   

 

 Substitute Fourier coefficients into the general equation and determine  

Even number  𝑏𝑛 = 0 

Odd number 𝒃𝒏 =  
−𝟐

𝝅𝒏
 



first three series 

 

𝑓(𝑥) =
3

2
− ∑

2

𝜋𝑛

∞

𝑛=1
 sin 𝑛𝑥   

 

 𝑓(𝑥) =
3

2
−

2

𝜋
 (sin 𝑥 +  

sin 2𝑥

2
 +  

sin 3𝑥

3
+ ⋯ … … … . ) 

 

Example 4: Find the Fourier series for the periodic function    

𝑓(𝑥) =  {
0         − 𝜋 ≤ 𝑥 ≤ 0
sin 𝑥        0 ≤ 𝑥 ≤ 𝜋

 

 

Solution:   have to find Fourier coefficients  𝑎𝑜 , 𝑎𝑛 , 𝑏𝑛 

1. 𝑎𝑜 =  
1

2𝜋
 ∫ 𝑓(𝑥) 𝑑𝑥

2𝜋

0
 =

1

2𝜋
 [∫ 0 𝑑𝑥 + ∫ 𝑠𝑖𝑛𝑥 𝑑𝑥] 

𝜋

0
 

0

−𝜋
 

              𝑎𝑜 =  
1

2𝜋
 [− cos 𝜋 + cos 0]    

               𝒂𝒐 =  
𝟏

𝝅
 

2.  𝑎𝑛 =  
1

𝜋
 ∫ 𝑓(𝑥) cos 𝑛𝑥 𝑑𝑥

2𝜋

0
 =  

1

𝜋
 ∫ sin 𝑥  cos 𝑛𝑥 𝑑𝑥

𝜋

0
 

 

 

 

                      𝑎𝑛 =  
1

2𝜋
 ∫ 𝑠𝑖𝑛𝑥(𝑛 + 1)𝑥 − sin(𝑛 − 1) 𝑥]𝑑𝑥 

𝜋

0
 

 

sinx coxnx = 1/2 [sin(n+1) x – sin(n-1) x] 



               𝑎𝑛 =  
1

2𝜋
 [

−cos ( 𝑛+1)𝑥

𝑛+1
+

−cos ( 𝑛−1)𝑥

𝑛−1
|0

𝜋 

           𝑎𝑛 =  
1

2𝜋
 [

−cos ( 𝑛+1)𝜋

𝑛+1
+

−cos ( 𝑛+1)0

𝑛+1
+

                    
cos ( 𝑛−1)𝜋

𝑛−1
+

cos ( 𝑛−1)0

𝑛−1
] 

           𝑎𝑛 =  
1

2𝜋
 [

− (−1)𝑛−1

𝑛+1
+

 (−1)𝑛−1

𝑛−1
+

1

𝑛+1
+

1

𝑛−1
] 

           𝑎𝑛 =  
1

2𝜋
 [

 (−1)𝑛−1+1

𝑛+1
+

 (−1)𝑛−1+1

𝑛−1
] 

            𝑎𝑛 =  
1

2𝜋
 [

 (−1)𝑛+1

𝑛+1
+

 (−1)𝑛+1

𝑛−1
] 

 

(−1)𝑛has two possible solutions depends on the value of n which could 

be even or odd number.   

either n is odd number so, 𝑎𝑛 = 0 

or n is even number so, 𝒂𝒏 =  
𝟏

𝟐𝝅
 [

𝟐

𝒏+𝟏
+

𝟐

𝒏−𝟏
] 

to avoid uncompleted solution, have to integrate for a1 and get value to 

substitute in Fourier series equation. So,  

𝑎1 = 
1

𝜋
 ∫ sin 𝑥  cos 𝑥  𝑑𝑥

𝜋

0
= 

1

2𝜋
[𝑠𝑖𝑛2𝑥|0

𝜋
] 

𝒂𝟏 = 0 

 

3. 𝑏𝑛 =  
1

𝜋
 ∫ 𝑓(𝑥) sin 𝑛𝑥  𝑑𝑥

2𝜋

0
 =  

1

𝜋
 ∫ 𝑠𝑖𝑛𝑥 𝑠𝑖𝑛 𝑛𝑥  𝑑𝑥

𝜋

0
 

 



 

 

 

                         𝑏𝑛 =  
1

2𝜋
 ∫  [𝑐𝑜𝑠(𝑛 − 1) 𝑥 –  𝑐𝑜𝑠(𝑛 + 1) 𝑥]𝑑𝑥

𝜋

0
 

 

                𝑏𝑛 =  
1

2𝜋
 [

sin ( 𝑛 − 1)𝑥

𝑛 − 1
−

sin ( 𝑛 + 1)𝑥

𝑛 + 1
|0

𝜋] 

 

sin 𝑛𝑥 = 0   𝑓𝑜𝑟 𝑛 = 1,2,3,4 … …. 

 

Then  𝒃𝒏 = 𝟎 

 

Now, write then general equation of Fourier series 

 

             𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)∞
𝑛=1   

 

 Substitute Fourier coefficients into the general equation and determine  

first three series 

 

𝑓(𝑥) =
1

𝜋
− ∑

𝟏
𝟐𝝅

 [ 𝟐
𝒏+𝟏

+ 𝟐
𝒏−𝟏

]
∞

𝑛=1
 cos 𝑛𝑥   

 

sinx sinnx = 1/2 [cos(n-1) x – cos(n+1) x] 



 𝑓(𝑥) =
1

𝜋
−

1

2𝜋
 (0 +

8

3
 𝑐𝑜𝑠2𝑥  +  

3

2
 𝑐𝑜𝑠3𝑥 + ⋯ … … … . ) 

 

Example 5: Find the Fourier series for the periodic function    

𝑓(𝑥) =  {
cos 𝑥         0 ≤ 𝑥 ≤ 𝜋

0                𝜋 ≤ 𝑥 ≤ 2𝜋
 

Solution:   have to find Fourier coefficients  𝑎𝑜 , 𝑎𝑛 , 𝑏𝑛 

1. 𝑎𝑜 =  
1

2𝜋
 ∫ 𝑓(𝑥) 𝑑𝑥

2𝜋

0
 =

1

2𝜋
 [∫ 0 𝑑𝑥 + ∫ 𝑐𝑜𝑠𝑥 𝑑𝑥] 

2𝜋

𝜋
 

0

−𝜋
 

              𝑎𝑜 =  
1

2𝜋
 [sin 0 + sin −𝜋]    

               𝒂𝒐 =  𝟎 

2. 𝑎𝑛 =  
1

𝜋
 ∫ 𝑓(𝑥) sin 𝑛𝑥  𝑑𝑥

2𝜋

0
 =  

1

2𝜋
 ∫ 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠 𝑛𝑥  𝑑𝑥

2𝜋

𝜋
 

 

 

 

 

                         𝑎𝑛 =  
1

2𝜋
 ∫  [𝑐𝑜𝑠(𝑛 + 1)𝑥 +  𝑐𝑜𝑠(𝑛 − 1) 𝑥]𝑑𝑥

2𝜋

𝜋
 

 

                𝑎𝑛 =  
1

2𝜋
 [

sin ( 𝑛 + 1)𝑥

𝑛 + 1
+

sin ( 𝑛 − 1)𝑥

𝑛 − 1
|𝜋

2𝜋] 

sin 𝑛𝑥 = 0   𝑓𝑜𝑟 𝑛 = 1,2,3,4 … …. 

Then  𝒂𝒏 = 𝟎 

 

cosx cosnx = 1/2 [cos(n+1) x + cos(n-1) x] 



  

3.    𝑏𝑛 =  
1

𝜋
 ∫ 𝑓(𝑥) cos 𝑛𝑥 𝑑𝑥

2𝜋

0
 =  

1

𝜋
 ∫ 𝑐𝑜𝑠𝑥 sin 𝑛𝑥 𝑑𝑥

2𝜋

𝜋
 

 

 

 

                      𝑏𝑛 =  
1

2𝜋
 ∫ 𝑠𝑖𝑛𝑥(𝑛 − 1)𝑥 + sin(𝑛 + 1) 𝑥]𝑑𝑥 

2𝜋

𝜋
 

 

               𝑏𝑛 =  
1

2𝜋
 [

−cos ( 𝑛−1)𝑥

𝑛−1
+

−cos ( 𝑛+1)𝑥

𝑛+1
|𝜋

2𝜋 

           𝑏𝑛 =  
1

2𝜋
 [

−cos ( 𝑛−1)𝜋

𝑛−1
+

−cos ( 𝑛+1)𝜋

𝑛+1
+

                    
cos ( 𝑛−1)0

𝑛−1
+

cos ( 𝑛+1)0

𝑛+1
] 

           𝑏𝑛 =  
1

2𝜋
 [

− (−1)𝑛−1

𝑛−1
+

−(−1)𝑛−1

𝑛+1
+

1

𝑛−1
+

1

𝑛+1
] 

           𝑏𝑛 =  
1

2𝜋
 [

 (−1)𝑛−1+1

𝑛−1
+

 (−1)𝑛−1+1

𝑛+1
] 

            𝑏𝑛 =  
1

2𝜋
 [

 (−1)𝑛+1

𝑛−1
+

 (−1)𝑛+1

𝑛+1
] 

 

(−1)𝑛has two possible solutions depends on the value of n which could 

be even or odd number.   

either n is odd number so, 𝑏𝑛 = 0 

or n is even number so, 𝒃𝒏 =  
𝟏

𝟐𝝅
 [

𝟐

𝒏−𝟏
+

𝟐

𝒏+𝟏
] 

cosx sinnx = 1/2 [sin(n-1) x + sin(n+1) x] 



to avoid uncompleted solution, have to integrate for b1 and get value to 

substitute in Fourier series equation. So,  

             𝑏1 = 
1

𝜋
 ∫ cos 𝑥  cos 𝑥  𝑑𝑥

𝜋

0
= 

1

2𝜋
 ∫ 𝑐𝑜𝑠2𝑥 𝑑𝑥 +

1

2

2𝜋

𝜋
 ∫ 𝑑𝑥

2𝜋

𝜋
 

             𝑏1 =
1

2𝜋
 [ 

sin 2𝑥

2
|𝜋

2𝜋
+ 

𝑥

2
|𝜋

2𝜋
]= 

1

2𝜋
[

2𝜋

2
−  

𝜋

2
] 

               0    

 

𝒃𝟏 =  
𝟏

𝟒
  

Now, write then general equation of Fourier series 

 

             𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)∞
𝑛=1   

 

 Substitute Fourier coefficients into the general equation and determine  

first three series 

 

𝑓(𝑥) = ∑
1

2𝜋
 [ 2

𝑛−1
+ 2

𝑛+1
]

∞

𝑛=1
 sin 𝑛𝑥   

 

 𝑓(𝑥) =
1

2𝜋
 (

1

4
𝑠𝑖𝑛𝑥 +

8

3
 𝑠𝑖𝑛2𝑥  +  

3

2
 𝑠𝑖𝑛3𝑥 + ⋯ … … … . ) 

 

 

 



Exercises: Find the Fourier series for the periodic functions 

 

1. 𝑓(𝑥) =  {
 𝑥                   0 ≤ 𝑥 ≤ 𝜋
𝜋                𝜋 ≤ 𝑥 ≤ 2𝜋

 

 

2. 𝑓(𝑥) = 𝑥𝑠𝑖𝑛x, for 0 ≤ 𝑥 ≤ 2𝜋 

 

3. 𝑓(𝑥) = k. for  0 ≤ 𝑥 ≤ 2𝜋 

 

4. 𝑓(𝑥) = 𝑥 + x2, for - 𝜋 ≤ 𝑥 ≤ 𝜋 

 

5. 𝑓(𝑥) =  {
 𝜋𝑥                           0 ≤ 𝑥 ≤ 1
𝜋(2 − 𝑥)                1 ≤ 𝑥 ≤ 2

 

 

6. 𝑓(𝑥) =  {
 2                          0 ≤ 𝑥 ≤ 1
𝑥                         1 ≤ 𝑥 ≤ 2

 

 

7. 𝑓(𝑥) = 𝑠𝑖𝑛
𝜋𝑥

𝑙
, for 0 ≤ 𝑥 ≤ 1 

 


