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Introduction 

Aircraft design is driven by the goal to transport cargo and passengers quickly from 

point to point. Since aircraft are highly integrated systems, developments in 

propulsion, aerodynamics and structures feed on each other to produce aircraft that 

operate from relatively low speeds to hypersonic speeds.  

It is important that all the different types of loads that aircraft will bear be well 

estimated and then the structure response to these loads be carefully calculated. Those 

forces produce results such as deformations in other words; the forces are an input the 

structure and the effect of the forces acting on the structure (deformation, cracking, 

etc.) are the output.  

The various types of structural component found in aircraft construction and the 

various loads they support. We saw that an aircraft is basically an assembly of 

stiffened shell structures ranging from the single cell closed section fuselage to 

multicellular wings and tail surfaces each subjected to bending, shear, torsional and 

axial loads. Structural members such as these are known as open section beams, while 

the cellular components are termed closed section beams; clearly, both types of beam 

are subjected to axial, bending, shear and torsional loads.  

General type of Load Applied on Structure and Stresses  

Airframes must be strong and light in weight. Many forces and structural stresses act 

on an aircraft when it is flying and when it is static. The stresses acting on an aircraft 

are shown in Figure 1. 
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Tension  

The simplest type of loading on a member is tension (Fig. 1, view A). A tensile load 

applied (axially) in line with the center of gravity of the section will result in tensile 

stress distributed uniformly across the plane of the cross section lying at right angles 

to the line of loading.  

 

This internal force per unit area at any section of the body is known as unit stress or 

simply a stress. It is denoted by a Greek letter sigma (  ). Mathematically, 

 

When a system of forces or loads acts on a body, it undergoes some deformation. This 

deformation per unit length is known as unit strain or simply a strain. It is denoted by 

a Greek letter epsilon (  ).Mathematically, 
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For example, an elevator control cable is in additional tension when the pilot moves 

the control column. 

Compression  

If forces acting on an aircraft move toward each other to squeeze the material, the 

stress is called compression. Compression (Fig.1, view B) is the opposite of tension. 

Compression is the resistance to crushing produced by two forces pushing toward each 

other in the same straight line. Then the stress induced at any section of the body is 

known as compressive stress A little consideration will show that due to the 

compressive load, there will be an increase in cross-sectional area and a decrease in 

length of the body. The ratio of the decrease in length to the original length is known 

as compressive strain. 

 

For example, when an airplane is on the ground, the landing gear struts are under a 

constant compression stress. 

Torsion  

Torsional (Fig.1, view C) stresses result from a twisting force. Torsional loading is 

the application of a force that tends to cause the member to twist about its structural 

axis. The principal deflection caused by torsion is measured by the angle of twist. The 

stress set up by torsion is known as torsional shear stress. It is zero at the centroid 

axis and maximum at the outer surface. The maximum torsional shear stress at the 

outer surface of the shaft may be obtained from the following equation; 
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Torsional stress in a fuselage is created in several ways. For example, torsional stress 

is encountered in engine torque on turboprop aircraft. Engine torque tends to rotate 

the aircraft in the direction opposite to the direction the propeller is turning. This force 

creates a torsional stress in the fuselage as shown in Fig. 2. Also, torsional stress on 

the fuselage is created by the action of the ailerons when the aircraft is maneuvered. 

 

 
Shear  

Shear stress is presented when the load applied parallel to the area (Fig. 1, view D) , or 

due to bending, (A shear load is a force that tends to produce a sliding failure on a 

material along a plane that is parallel to the direction of the force). 
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The corresponding strain is known as shear strain and it is measured by the angular 

deformation accompanying the shear stress, The shear stress and shear strain are 

denoted by the Greek letters tau(  ) and phi ( ) respectively. Mathematically, 

 

 

Bending  

Bending is a combination of tension and compression. For example, when bending a 

piece of tubing, the upper portion compression and the lower portion tension together.  

 

 

For example, the wing spars of an aircraft in flight are subject to bending stresses. 
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Varying Stress  

All structural members of an aircraft are subject to one or more stresses. Sometimes a 

structural member has alternate stresses; for example, it is under compression one 

instant and under tension the next. The strength of aircraft materials must be great 

enough to withstand maximum force of varying stresses. 

When an aircraft is on the ground, there is a bending force on the fuselage. This 

force occurs because of the weight of the aircraft. Bending increases when the aircraft 

makes a carrier landing. This bending action creates a tension stress on the lower skin 

of the fuselage and a compression stress on the top skin as shown in Fig.(3) 

 

When the aircraft is in flight, lift forces act upward against the wings, tending to 

bend them upward. The wings are prevented from folding over the fuselage by the 

resisting strength of the wing structure. The bending action creates a tension stress on 

the bottom of the wings and a compression stress on the top of the wings. 

Note that; during flight, any maneuver that causes acceleration or deceleration 

increases the forces and Stresses on the wings, fuselage, and landing gear of aircraft 

are tension, compression, shear, bending, and torsion. These stresses are absorbed 

by each component of the wing structure and transmitted to the fuselage structure. 

The empennage (tail section) absorbs the same stresses and transmits them to the 

fuselage.  
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1.1 Loads on st

The structure of an uired to support two distinct classes of load:

The ground loads: includes all loads encountered by the aircraft during
movement or transportation on the ground such as taxiing and landing loads,

towing and hoisting.

The air loads: comprises loading imposed on the structure during flight by
manoeuvres and gusts.

loads

The basic functions of an airGfiEft's structure
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Aircraft must be capable of landing on water and aircraft designed to fly at high
speed at low altitude, e.g. the Tornado, require a structure of above average
strength to withstand the effects of flight in extremely turbulent air.

The surface forces which act upon the surface of the structure, e.g. aerodynamic
and hydrostatic pressure, and body forces which act over the volume of the
structure and are produced by gravitational and inertial effects.

Generally, these resultants cause direct loads, bending, shear and torsion in all
parts of the structure in addition to local, normal pressure loads imposed on the

skin.

Conventional aircraft usually cor-rsist of fuselage, wings and tail plane.

a. The fuselage contains crew and payload, the latter being passengers, cargo,

weapons plus fuel, depending on the type of aircraft and its function;
b. The wings provide the lift and the tail plane is the main contributcr to

directional control. In addition, ailerons, elevators and the rudder enable the

pilot to manoeuvre the aircraft and maintain its stability in flight, while wing
flaps provide the necessary increase of lift for take-off and landing.

Figure 1.2 shows typical aerodynamic force resultants experienced by an aircraft in

steady flight.
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Fig. 1.3: a) Pressure distribution around an aerofoil. (b) Transference of lift
and drag load to AC.

The pressure distribution, shown in Fig. 1.3(a), has vertical (lift) and horizontal

(drag) resultants acting at a centre of pressure (CP). The position of the CP changes

as the pressure distribution varies with speed or wing incidence.
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a

Skin

a Resists lied forces by transmitting aerodynamic

forces to the inal and verse supporting members

a Supports the I

loads.

Supports the

members in resisting the applied bending and axial

o transverse members in resisting the hoop, or circumferential,

load when the structure is pressurized

Ribs and Frames : It is usually made of Aluminum alloys and used to maintain

the shape of the wing cross section as it is governed by aerodynamic consideration

and:

I.

lr

Fig. 1.6: Semi-Nlonocoque structure

1'3 Functions of Aircraft structural co*ponet'ts
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a

o

Structural integration of the wing and fuselage.

Keep the wing in its aerodynamic profile.

To distribute concentrated loads from engine, fuel, fuel tanks..'etc into

structure.

To support longitudinal stiffeners (stringers) at their ends and to increase

their resistance to column buckling stress.

To increase plate buckling stress o skin panels'

Re-distribute stresses round discontin

inspection panels, fuel tanks, . . . etc.

such as (under caniage wells,

o

a

a
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, ... : Fig. 1.7 ThC,Wing structure
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Spar It is used to trans lage structure and it
has other secondary jobs:

hold axial

loads

To ho due tanks, ,....etc that altached to the wing,
usually s Alloys.
Form the wlng stable torsion resistance

Fis. 1.8: A detailed wing structure
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Stiffener or Stringers

o Resist bending and axial loading along With the skin. 
'

o Divide the skin into small panels and thereby increase its Buckling and

failing stresses.

o Act with the skin in resisting axial loads caused by pressurization.
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1. The behavior of these

analysis of the assemb

2.The webs (skin and

3. The longitudinal elements

4. The frames and ri

5. The

a

ele often

only

stress

simpli$z the

the own.

loading.

Skin: It is
shape and

used to cover structure which is used to provide an aerodynamic

to protect p pay load, systems, ..etc from environmental

conditions encountered in flight skin. It is usually made of Aluminum alloys.

Frames (Rings): It is the transverse members in fuselage and I it extends across

the complete cross section, it named Bulkheads.

It is unction is similar to wing ribs. It has a circular or semi-circular cross section.

The most important differences arises in the case of pressurized aircraft where the

!G*, ,
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skin combines with frames and stringers to react the hoop and circumferential

stresses respectivelY.

Longerons: They are longitudinal members reinforce the skin support primary

bending loads. They are typically made o aluminum alloy either o a single and

longerons together prevent tension and compression from bending the fuselage'

Stringers: They are used in the Semi-monocoque fuselage. Theses longitudinal

members are typically more numerous and lighter in weight than the Longerons'

Stringers and Longerons together prevent teniio,n,]and compression rom bending

the fuselage. The fuselage section is bolted togffi through flanges round

periphery, while wings and tail plano..,ofe attached to piOk'-qp Points on the relevant

fuselage frames.
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AL-Farahidi University /College of Technical Eng. 

Aircraft Structure/ 4th Year 

Chapter Two: Materials Used in A/C Structure 

 

We shall discuss the materials used in aircraft construction. Several factors influence 

the selection of the structural material for an aircraft, but amongst these strength allied 

to lightness is probably the most important. The   selection of the most suitable 

material for a given aircraft and engine parts will be governed by:  

 The function , size  and shape of the part 

 Required mechanical properties, strength, stiffness or rigidity, hardness and 

ductility, with particular consideration of the extreme temperature conditions 

liquid engines. 

 Required physical and chemical properties, density, thermal conductivity, 

specific heat, and coefficient of expansion, poisons ratio, strength to weight 

ratio, corrosion resistance, and compatibility with propellants as function of 

temperature. 

 Consideration to fabrication , such as forgeability, castability, weldability, 

machinability and formability  

 Cost and availability 

 Existing industry and government standards 

 

Alloys 
An alloy is composed of two or more metals. The metal present in the alloy in the 

largest amount is called the base metal. All other metals added to the base metal are 

called alloying elements. Adding the alloying elements may result in a change in the 

properties of the base metal. For example, pure aluminum is relatively soft and 

weak. However, adding small amounts or copper, manganese, and magnesium will 

increase aluminum's strength many times. Alloys are important to the aircraft industry. 

They provide materials with properties that pure metals do not possess 
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Aluminium Alloys 

Pure aluminum is a relatively low strength extremely flexible metal with virtually 

no structural applications. However, when alloyed with other metals its properties are 

improved significantly. Three groups of aluminum alloy have been used in the 

aircraft industry for many years and still play a major role in aircraft construction. 

In the first of this aluminum is alloyed with copper, magnesium, manganese, silicon 

and iron, and has a typical composition of 4% copper, 0.5% magnesium, 0.5% 

manganese, 0.3% silicon and 0.2% iron with the remainder being aluminum. 

The second group of alloys contains, in addition to the above, 1–2% of nickel, a 

higher content of magnesium and possible variations in the amounts of copper, silicon 

and iron. The most important property of these alloys is their retention of strength at 

high temperatures which makes them particularly suitable for aero engine 

manufacture. A development of these alloys by Rolls-Royce and High Duty Alloys 

Ltd replaced some of the nickel by iron and reduced the copper content; were used in 

aero engines and airframes The third group of alloys depends upon the inclusion of 

zinc and magnesium for their high strength and has a typical composition of 2.5% 

copper, 5% zinc, 3% magnesium and up to 1% nickel with mechanical properties of 

0.1% proof stress 510 N/mm2. 

Alloys from each of the above groups have been used extensively for airframes, skins 

and other stressed components, the choice of alloy being influenced by factors such 

as strength, ductility, ease of manufacture (e.g. in extrusion and forging), resistance 

to corrosion, fatigue strength, and resistance to fast crack propagation under load. 
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The latest aluminum alloys to find general use in the aerospace industry are the 

aluminum–lithium alloys. Of these, the aluminum–lithium–copper–manganese alloy, 

developed in the UK, is extensively used in the main fuselage structure of Helicopters’ 

design. Aluminum–lithium alloys can be successfully welded, possess high fracture 

toughness and exhibit a high resistance to crack propagation. 

 

Steel 
The use of steel for the manufacture of thin-walled, box-section spars in the 1930s 

has been superseded by the aluminum alloys described in section above. Clearly, its 

high specific gravity prevents its widespread use in aircraft construction, but it has 

retained some value as a material for castings for small components demanding 

high tensile strengths, high stiffness and high resistance to wear. Such components 

include undercarriage pivot brackets, wing-root attachments. 

 High tensile strengths 

 High stiffness 

 High resistance to wear 

 

Maraging Steels were developed in 1961, from which carbon is either eliminated 

entirely or present only in very small amounts. The hardening of maraging steels is 

achieved by the addition of other elements such as nickel, cobalt and molybdenum. 

Typical Maraging Steel would have these elements present in the proportions: nickel 

17–19 per cent, cobalt 8–9 percent, molybdenum 3–3.5 per cent, with titanium 0.15–

0.25 per cent. The carbon content would be a maximum of 0.03 per cent. It is 0.2 per 

cent proof stress would be nominally 1400N/mm2 and its Modulus of Elasticity 

180000N/mm2. The main advantages of Maraging steels: 

 

 Higher fracture toughness  

  Simpler heat treatment  

  Much lower volume change and distortion during hardening 

  Very much simpler to weld and easier to machine  

 Better resistance to stress corrosion/hydrogen embrittlement. 

 

 

Maraging Steels have been used in: aircraft arrester hooks, rocket motor cases, 

helicopter undercarriages, gears, ejector seats and various structural forgings. 
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Titanium 

The use of titanium alloys increased significantly in the 1980s, particularly in the 

construction of combat aircraft as opposed to transport aircraft. Titanium  alloys 

possess high specific properties, have a good fatigue strength/tensile strength ratio 

with a distinct fatigue limit, and some retain considerable strength at 

temperatures up to 400–500◦C. Generally, there is also a good resistance to 

corrosion and corrosion fatigue although properties are adversely affected by exposure 

to temperature and stress in a salt environment. The disadvantages are a relatively 

high density so that weight penalties are imposed if the alloy is extensively used, 

coupled with high primary and high fabrication costs, approximately seven times those 

of aluminum and steel. Titanium alloys were used in the airframe and engines of 

Concorde, while the Tornado wing carry-through box is fabricated from a wieldable 

medium strength titanium alloy. Titanium alloys are also used extensively in the F15 

and F22 American fighter aircraft and are incorporated in the tail assembly of the 

Boeing 777 civil airliner. Other uses include forged components such as flap and 

undercarriage parts. 

 

Composite Materials 

Composite is material consisting of two or more materials, which have different 

physical and chemical properties combined together in a proper content and  

fashion to produce a new material  properties that are different from the properties 

of those individual martials. The main of the aircraft industries is to reduce 

weight keeping the same or more strength.  

Different types of composite materials are available in these days such as fiber glass, 

Kevlar, and boron fibers which is used in many industrial applications. 

The fibres may be continuous or discontinuous but possess a strength very much 

greater than that  of the same bulk materials. For example, carbon fibres have a tensile 

strength of the order of 2400 N/mm2 and a modulus of elasticity of 400 000 N/mm2. 

In the early stages of the development of composite materials glass fibres were used in 

a matrix of epoxy resin. This glass-reinforced plastic (GRP) was used for helicopter 

blades but found limited use in components of fixed wing aircraft due to its low 

stiffness. 

In the 1960s, new fibrous reinforcements were introduced: Kevlar composites are 

tough but poor in compression and difficult to machine, so they were used in 

secondary structures. Another composite, using Boron fiber and developed in the 

USA, was the first to possess sufficient strength and stiffness for primary structures. 

These composites have now been replaced by carbon-fiber reinforced plastics (CFRP) 
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Typically; CFRP has a modulus of the order of three times that of GRP, one and a 

half times that of a Kevlar composite and twice that of aluminum alloy. Its strength is 

three times that of aluminum alloy, approximately the same as that of GRP, and 

slightly less than that of Kevlar composites. CFRP is included in the wing, tail plane 

and forward fuselage of the latest Harrier development, is used in Jaguar wing. The 

use of CFRP in the fabrication of helicopter blades has led to significant increases in 

their service life, where fatigue resistance rather than stiffness is of primary 

importance. 

 

 

 
                                        Figure. Composite Materials 

 

Advantages of Composite Material 

 High strength to weight ratio 

 Fiber-to-fiber transfer of stress allowed by chemical bonding 

 Modulus (stiffness to density ratio) 3.5 to 5 times that of steel or aluminum 

 Longer life than metals 

 Higher corrosion resistance 

 Tensile strength 4 to 6 times that of steel or aluminum 

 Greater design flexibility 

 Bonded construction eliminates joints and fasteners 

 Easily repairable 
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Disadvantages. 

 It is a brittle material 

 Does not yield plastically in regions of high stress concentration. 

 Its strength is reduced by impact damage which may not be visible.  

 Further, the properties of CFRP are subject to more random variation than 

        those of metals. 

 Delamination of layers 

 High cost 

 

 

Application of Composite in Aircraft 

 Fuselage (bulkhead) 

 Wing flap  

 Rudder 

 Elevator 

 Spoilers 

 Floor beams and panels 

 

 

 

 
 

                                Figure. Materials used in 787 body 
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Properties of Metals 
This section was used to describe various properties and characteristics of metals used 

in the aircraft industry 

 

Hardness 

Hardness refers to the ability of a material to resist abrasion, penetration, cutting 

action, or permanent distortion. Hardness may be increased by cold working the 

metal and, in the case of steel and certain aluminum alloys, by heat treatment. 

Hardness and strength are closely associated properties of metals. 
 

Strength 

One of the most important properties of a material is strength. Strength is the ability 

of a material to resist deformation. Strength is also the ability of a material to resist 

stress without breaking.  

 

Density 

Density is the weight of a unit volume of a material. In aircraft work, the specified 

weight of a material per cubic inch is preferred. Density is an important consideration 

when choosing a material to be used in the design of a part in order to maintain the 

proper weight and balance of the aircraft. 

 

Malleability 

A metal which can be hammered, rolled, or pressed into various shapes without 

cracking, breaking, or leaving some other detrimental effect, is said to be malleable. 

This property is necessary in sheet metal that is worked into curved shapes, such as 

cowlings, fairings, or wingtips. Copper is an example of a malleable metal. 

 

Ductility 

Ductility is the property of a metal which permits it to be permanently drawn, bent, 

or twisted into various shapes without breaking. This property is essential for metals 

used in making wire and tubing. Ductile metals are greatly preferred for aircraft use 

because of their ease of forming and resistance to failure under shock loads. For this 

reason, aluminum alloys are used for cowlings; fuselage and wing skin, and formed 

or extruded parts, such as ribs, spars, and bulkheads. Chrome molybdenum steel is 

also easily formed into desired shapes.  
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Elasticity 

Elasticity is that property that enables a metal to return to its original size and shape 

when the force which causes the change of shape is removed. This property is 

extremely valuable because it would be highly undesirable to have a part permanently 

distorted after an applied load was removed. Each metal has a point known as the 

elastic limit, beyond which it cannot be loaded without causing permanent distortion. 

In aircraft construction, members and parts are so designed that the maximum loads 

to which they are subjected will not stress them beyond their elastic limits.  

 

Toughness 

A material which possesses toughness will withstand tearing or shearing and may be 

stretched or otherwise deformed without breaking. Toughness is a desirable 

property in aircraft metals. 

 

Brittleness 

Brittleness is the property of a metal which allows little bending or deformation 

without shattering. A brittle metal is apt to break or crack without change of shape. 

Because structural metals are often subjected to shock loads, brittleness is not a very 

desirable property. Cast iron, cast aluminum, and very hard steel are examples 

of brittle metals. 

 

Conductivity 

Conductivity is the property which enables a metal to carry heat or electricity. The 

heat conductivity of a metal is especially important in welding because it governs the 

amount of heat that will be required for proper fusion. In aircraft, electrical 

conductivity must also be considered in conjunction with bonding, to eliminate radio 

interference. 

 

Thermal Expansion 

Thermal expansion refers to contraction and expansion that are reactions produced 

in metals as the result of heating or cooling. Heat applied to a metal will cause it to 

expand or become larger. Cooling and heating affect the design of welding, castings, 

and tolerances necessary for hot rolled material. 

 

Isotropic Material 

In many materials the elastic properties are the same in all directions at each point 

in the material although they may vary from point to point, such a material is 
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known as isotropic. An isotropic material having the same properties at all points is 

known as homogeneous. 

Anisotropic Materials 

Materials having varying elastic properties in different directions are known as 

anisotropic 

Orthotropic Materials  

Orthotropic materials mean different elastic properties in different directions. A 

material whose elastic properties are limited to three different values in three 

mutually perpendicular directions is known as orthotropic. 
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AL-Farahidi University 

  College of Technical Eng. 

4th Year / Aeronautical Eng./A/C Structure  

 Chapter Three 

 

Bending of Open and Closed Thin-Walled Beams 

Bending is the combination of compressive and tensile stresses. When an A/C is in 

Flight, when will generate the lift force which will cause bending effect in the wing. 

If the bending is taking place in the plane of loading it is called a symmetrical 

bending. Other than plane of loading it is called unsymmetrical bending. Two cases 

for unsymmetrical bending; 

 Unsymmetrical section will always have unsymmetrical bending. 

 Symmetrical section when subjected loading other than in the line of symmetry. 

 

  

Assumptions made in the theory of pure bending; 

 Beam is assumed to be initially straight 

 Material is homogenous and isotropic 

 The stress induced is proportional to the strain and at no place, the stress exceed 

the elastic limit  
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 The value of modulus of elasticity is same for the fibers of the beam under 

compression or under tension 

 The transverse section of the beam which is plane before bending remains 

plane after bending 

 Elongation above particular axis is proportional to distance from particular 

axis. 

 

3.1 Calculation of A/C Section Properties 

Center of gravity (centroid of ): 

It is a point in a body where the resultant gravity force is acted through. This resultant 

force is equal to the sum of weights (   ) of all elements of the body, then: 

 

Centroid of area: 

For plate of uniform thickness and density lies in xy plane: 

 

Where;   is the area of each element. 

 

Centroid of wing cross section 

It is the centroid of this cross section area and it is evaluated after accomplishment of 

structural idealization for this cross section. 

 

Second moments of area of standard sections 

 Second Moment of area 
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I𝑥𝑦 = ∫ 𝑥. 𝑦 𝑑𝐴 Product moment of inertia of cross section. 

 Parallel axes theorem: 

Suppose that the second moment of area, Ic , about an axis through its centroid C is known. The 

second moment of area, IN , about a parallel axis, NN, a distance b from the centroidal axis is 

then given by 

𝐼𝑁 = 𝐼𝑐 + 𝐴𝑏2 

 

Neutral axis: 

 It is an axis passing through the centroid of cross section. The bending moments Mx and 

My about it produce zero direct stress in all the points on it.  

 

Principle axes: 

 Two perpendicular axes a bout which product moment of area is zero (I𝑥𝑦 = 0 ), and the 

two other moments, I𝑥𝑥 and I𝑦𝑦 , are either maximum or minimum for example it I𝑥𝑥 is 

maximum about  one axis , I𝑦𝑦 is minimum about this axis, and I𝑥𝑥 will be minimum about the 

other axis, while I𝑦𝑦become maximum. If either x-axis or y-axis is coincided with principle 

axis then  I𝑥𝑦 = 0  also. 

Elastic axis: 

 It is an axis for the wing about which rotation will occur when the wing is loaded in pure 

torsion. It is important for flutter analysis of the wing. 

Shear center: 

 It is a point in the wing cross section at which the resultant shear load must act to produce 

a wing deflection with no rotation (twist). 

 Shear centers for all wing sections must lie on the elastic axis of the wing, about this is 

not true because skin wrinkles and becomes ineffective in resisting compression loads. For 
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practical purpose the elastic axis may be assumed to coincide with line joining the shear centers 

for all wing sections. 

3.2 Bending moments and bending stresses 

Resolution of bending moments: 

 A bending moment M applied in any longitudinal plane parallel to the z- axis may be 

resolved into components Mx and My by the normal rules of vectors.  

Mx and My  are positive when the induced tension in the positive xy quadrant of the beam cross-

section. 

 

 

 

 

 

 

 

 

 

 

 

Bending moment M applied in any longitudinal plane parallel to the z-axis may be resolved 

into components Mx  and My. 

𝑀𝑥 =  M sin 𝜃          and  𝑀𝑦 = M cos 𝜃 

For positive M,     

if  θ < π/2   Mx   is  +ve   and   My  is +ve 
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If   θ > π/2   Mx  is  +ve   and   My  is -ve 

Direct stress distribution due to bending: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C is the centroid, N.A. is neutral axes.  

Origin of axes is coincide with the centroid C, (ξ) is the distance from element (δA)  to N.A. 

From Hooke’s low  

𝜎𝑧 = 𝐸휀𝑧 

 

Figure 1 
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If the beam is bent to a radius of curvature ρ about neutral axis at this particular section and 

since plane sections are assumed to remain plane after bending, then: 

휀𝑧 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ

𝑜𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
 

휀𝑧 =
(𝜌+𝜉)𝜃−𝜌𝜃

𝜌𝜃
    ⇒           휀𝑧 =

𝜉

𝜌
 

𝜎𝑧 = 𝐸휀𝑧           ⇒  𝜎𝑧 =
𝐸 𝜉

𝜌
 

 

 

The beam supports pure bending moments so that the resultant end load on any section must 

be zero. 

(E/ ρ) is constant and has been canceled. It follows that the N.A. passes through the centroid 

see figure b. 

Suppose that N.A. is inclined to Cx by angle α, then  

𝜉 = 𝑥 sin 𝛼 + 𝑦 cos 𝛼 

 

𝜎𝑧 =
𝐸 𝜉

𝜌
        →      𝜎𝑧 =

𝐸

𝜌
 (𝑥 sin 𝛼 + 𝑦 cos 𝛼)   (3.1) 

 

        

∫ 𝜎𝑧

𝐴

𝑑𝐴 = 0 

∫
𝐸𝜉

𝜌
𝐴

 𝑑𝐴 = 0       →      ∫ 휁

𝐴

 𝑑𝐴 = 0          

θ 

A B 

𝐵ሖ  𝐴ሖ  

𝜉 

R = ρ 
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The moment resultants of the internal direct stress distributions have the same sense as the 

applied moments (Mx) and (My). Thus 

𝑀𝑥 = ∫ 𝜎𝑧 𝑦  𝑑𝐴
𝐴

         and     𝑀𝑦 = ∫ 𝜎𝑧 𝑥  𝑑𝐴
𝐴

        

Substitute for 𝜎𝑧 from Equation (i) 

 

 

 

 

 

 

 

𝑀𝑥 = 𝐴 𝐼𝑥𝑦 +  𝐵 𝐼𝑥𝑥 (3,2) 

 

𝑀𝑦 = 𝐴 𝐼𝑦𝑦 +  𝐵 𝐼𝑥𝑦 (3.3) 

 

 

Then  

𝜎 = (
𝑀𝑦 𝐼𝑥𝑥 − 𝑀𝑥 𝐼𝑥𝑦

 𝐼𝑥𝑥 𝐼𝑦𝑦 −  𝐼2
𝑥𝑦 

) . 𝑥 + (
𝑀𝑥 𝐼𝑦𝑦 − 𝑀𝑦 𝐼𝑥𝑦

 𝐼𝑥𝑥 𝐼𝑦𝑦 −  𝐼2
𝑥𝑦 

) . 𝑦  

 

Solving these two equations (3.2) and (3.3 ) gives: 

𝐴 =
𝑀𝑦 𝐼𝑥𝑥 − 𝑀𝑥 𝐼𝑥𝑦

 𝐼𝑥𝑥 𝐼𝑦𝑦 −  𝐼2
𝑥𝑦 

 𝐵 =
𝑀𝑥 𝐼𝑦𝑦 − 𝑀𝑦 𝐼𝑥𝑦

 𝐼𝑥𝑥 𝐼𝑦𝑦 −  𝐼2
𝑥𝑦 

 

𝑀𝑥 = ∫
𝐸

𝜌𝐴

(𝑥 𝑦 𝑠𝑖𝑛𝑥 +  𝑦2𝑐𝑜𝑠𝑥) 𝑑𝐴 

 

𝑀𝑥 =
𝐸

𝜌
sin 𝛼  𝐼𝑥𝑦 +  

𝐸

𝜌
cos 𝛼  𝐼𝑥𝑥 𝑀𝑦 =

𝐸

𝜌
sin 𝛼  𝐼𝑦𝑦 +  

𝐸

𝜌
cos 𝛼  𝐼𝑥𝑦 

𝑁𝑜𝑤 let       𝐴 =
𝐸

𝜌
sin 𝛼  and           𝐵 =

𝐸

𝜌
𝑐𝑜𝑠 𝛼 

𝜎 = 𝐴. 𝑥 + 𝐵. 𝑦 
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𝜎 =
𝑀𝑥
̅̅ ̅̅

 𝐼𝑥𝑥
𝑦 +

𝑀𝑦
̅̅ ̅̅

 𝐼𝑦𝑦
𝑥  

Where 𝑀𝑥
̅̅ ̅̅  and 𝑀𝑦 ̅̅ ̅̅ ̅ are effective bending moment, 

 

 

 

Note: if either Cx or Cy  is axis of symmetry or both, then Ixy  is zero and that axis is principal 

axis and  

 

 

 

Further if either Mx or My is zero then  

 

Which is the result of simple engineering theory of bending for beams having at least 

singly symmetrical cross section. 

Mx  and  My are pure bending moment about x-axis and y-axis respectively.{if shear loads Sx  

and Sy are acted on any section then they will produce bending moment on the next section. 

Position of the neutral axis 

 At all points on the neutral axis the direct stress is zero by definition. 

Therefore: 

 

 

𝜎 =
𝑀𝑥

 𝐼𝑥𝑥
. 𝑦  or      𝜎 =

𝑀𝑦

 𝐼𝑦𝑦
. 𝑥 

 

�̅�𝑥 = 𝑀𝑥         and               �̅�𝑦 = 𝑀𝑦                       

 

 

�̅�𝑥 = (
𝑀𝑥 − 𝑀𝑦 𝐼𝑥𝑦  𝐼𝑦𝑦⁄

1 −  𝐼2
𝑥𝑦  𝐼𝑥𝑥 𝐼𝑦𝑦⁄  

)             �̅�𝑦 = (
𝑀𝑦 − 𝑀𝑥 𝐼𝑥𝑦  𝐼𝑥𝑥⁄

1 −  𝐼2
𝑥𝑦  𝐼𝑥𝑥 𝐼𝑦𝑦⁄  

) 

 

𝜎 =
𝑀𝑥

 𝐼𝑥𝑥
. 𝑦 +

𝑀𝑦

 𝐼𝑦𝑦
. 𝑥 

𝜎 =
𝑀𝑥
̅̅ ̅̅

 𝐼𝑥𝑥
𝑦 +

𝑀𝑦
̅̅ ̅̅

 𝐼𝑦𝑦
𝑥 0 =

𝑀𝑥
̅̅ ̅̅

 𝐼𝑥𝑥
𝑦 +

𝑀𝑦
̅̅ ̅̅

 𝐼𝑦𝑦
𝑥 
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Where xN.A. and yN.A. are coordinates of points on the neutral axis. Hence 

 

Or  from figure 1 (b) 

 

Example:  

 A beam having the cross-section   is subjected to a bending moment of 1500 N m in a 

vertical plane. Calculate the maximum direct stress due to bending stating the point at which it 

acts. 

 

 

 

 

 

 

The position of the centroid of the section may be found by taking moments of   areas about 

some convenient point. Thus 

(120 × 8 + 80 × 8)�̅� =  120 × 8 × 4 + 80 × 8 × 48 

  Giving                          �̅� = 21.6 𝑚𝑚 

And   
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   (120 ×  8 + 80 × 8)�̅� =  80 ×  8 × 4 +  120 ×  8 × 24 

Giving   �̅� = 16 𝑚𝑚 

The next step is to calculate the section properties referred to axes Gxy. 

Hence 

 

 

inspection of   Eq. (i) the σz will be a maximum at    point   F where 

 
𝑥 =

−
8𝑚𝑚       , 𝑦 = −66.4 𝑚𝑚 

Thus    𝜎𝑧,𝑚𝑎𝑥 = −96 𝑁 𝑚𝑚2⁄   (compressive)
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Example. A horizontal cantilever 2m long is constructed from the Z-section shown in 

Figure blow.  A load of 10 kN is applied to the end of the cantilever at an angle of 

   to the horizontal asshown. Assuming that no twisting moment is applied to the 

section, determine the stresses at points A and B. (           
   ,         

      . All dimensions are in mm. 
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  H.W_1 

The section of a thick beam has the dimensions shown in Figure blow. Calculate the 

section properties    ,   and      referred to horizontal and vertical axes through the 

centroid of the section. Determine also the direct stress at the point A due to a 

bending moment M y= 55 N m. 

 

                                                                                          

H.W_2
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3.3 General case of loading 

 Consider the element shown, where  

δz  : element of length in z-direction. 

Sy  : shear load in y-direction. 

Mx : bending moment about x-axis. 

wy  : distributed load of varying intensity. 

 

As the element length is small, then the intensity is assumed constant.  

(Mx) and Sy are +ve  in the direction shown. 

There for, for equilibrium of the element in the y direction 

(𝑆𝑦 +
𝜕𝑆𝑦

𝜕𝑧
𝛿𝑧) + 𝑤𝑦𝛿𝑧 − 𝑆𝑦 = 0 

From which,   

𝑤𝑦 = −
𝜕𝑆𝑦

𝜕𝑧
 

Taking moments about   A  

 

(𝑀𝑥 +
𝜕𝑀𝑥

𝜕𝑧
𝛿𝑧) − (𝑆𝑦 +

𝜕𝑆𝑦

𝜕𝑧
𝛿𝑧) 𝛿𝑧−𝑤𝑦

(𝛿𝑧)2

2
− 𝑀𝑥 = 0 
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Or , when second order terms are neglected, 

𝑆𝑦 =
𝜕𝑀𝑥

𝜕𝑧
 

Combine these results into a single expression  

−𝑤𝑦 =
𝜕𝑆𝑦

𝜕𝑧
=

𝜕2𝑀𝑥

𝜕𝑧2
 

Similarly for loads in the xz plane  

−𝑤𝑥 =
𝜕𝑆𝑥

𝜕𝑧
=

𝜕2𝑀𝑦

𝜕𝑧2
 

 

If it assumed that a parameter 𝑆�̅� bears the same relationship to �̅�𝑥 as 𝑆𝑦 does to 𝑀𝑥 then 

 

𝑆𝑦
̅̅ ̅ =

𝑆𝑦 − 𝑆𝑥𝐼𝑥𝑦/𝐼𝑦𝑦

1 − 𝐼𝑥𝑦
2 /𝐼𝑥𝑥𝐼𝑦𝑦

 
 

In similar fashion   

𝑆𝑥
̅̅ ̅ =

𝑆𝑥 − 𝑆𝑦𝐼𝑥𝑦/𝐼𝑥𝑥

1 − 𝐼𝑥𝑦
2 /𝐼𝑥𝑥𝐼𝑦𝑦

 
 

Parameters  �̅�𝑦 and �̅�𝑥 are related to load intensities �̅�𝑦 and �̅�𝑥 .  

𝑤𝑥̅̅̅̅ =
𝑤𝑥−𝑤𝑦𝐼𝑥𝑦/𝐼𝑥𝑥

1−𝐼𝑥𝑦
2 /𝐼𝑥𝑥𝐼𝑦𝑦

         and            𝑤𝑦̅̅ ̅̅ =
𝑤𝑦−𝑤𝑥𝐼𝑥𝑦/𝐼𝑦𝑦

1−𝐼𝑥𝑦
2 /𝐼𝑥𝑥𝐼𝑦𝑦

 
 

 

The parameters �̅�𝑥, �̅�𝑦, 𝑆�̅�, 𝑆�̅�, �̅�𝑥, �̅�𝑦 are often termed “effective” bending moments, shear 

forces and load intensities. 
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3.4 Approximations for thin-walled sections 

We may exploit the thin-walled nature of aircraft structures to make simplifying 

assumptions in the determination of stresses and deflections produced by bending. 

Thus, the thickness t of thin-walled sections is assumed to be small compared with 

their cross-sectional dimensions so that stresses may be regarded as being constant 

across the thickness. Furthermore, neglect squares and higher powers of t in the 

computation of sectional properties and take the section to be represented by the mid-

line of its wall. 

 

Moment of inertia 

Moment of inertia is the one of the important sectional properties which gives the 

details about resistance to Bending of a section. Thin walled section is used in 

airframe structure to withstand the Torsion as wall as Bending Loads. Thin walled 

section also provides weight advantages for airframe designers. As an illustration of 

the procedure, consider the channel section as shown in figure below. 

 

 

 
 

The section is singly symmetric about the x axis so that: 
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Thin- walled sections frequently have inclined or curved walls which complicated the 

calculation of section properties. 

 

Consider the inclined thin section of figure below. Its second moment of area about a horizontal 

axis through its centroid is given by 

𝐼𝑥𝑥 = 2 ∫    𝑡 𝑦2 𝑑𝑠  =  2 ∫   𝑡( 𝑠 sin 𝛽)2 𝑑𝑠 

𝑎 2⁄

0

𝑎 2⁄

0

 

From which   𝐼𝑥𝑥 =
𝑎3𝑡sin2𝛽

12
 

Similarly    𝐼𝑥𝑥 =
𝑎3𝑡 cos2 𝛽

12
 

The product second moment of area is: 

𝐼𝑥𝑦 = 2 ∫    𝑡 𝑥𝑦 𝑑𝑠  =  2 ∫   𝑡( 𝑠 cos 𝛽) ( 𝑠 sin 𝛽) 𝑑𝑠 

𝑎 2⁄

0

𝑎 2⁄

0

 

Which gives  𝐼𝑥𝑦 =
𝑎3𝑡 sin 2𝛽

24
  

It could be note here that expressions are approximate in that their derivation neglects power 

of t2 and upwards by ignoring the second moments of area of the element δs about axes through 

its own centroid. 

Properties of thin-walled curved sections are found in a similar manner. Thus,𝐼𝑥𝑥 for 

semicircular section of figure below. 
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𝐼𝑥𝑥 = ∫    𝑡 𝑦2 𝑑𝑠  

𝜋𝑟

0

 

Expressing y and s I terms of a single variable θ simplifies the integration, hence  

𝐼𝑥𝑥 = ∫    𝑡 (𝑟 cos 𝜃) 2 𝑟 𝑑𝜃

𝜋

0

 

From which  

𝐼𝑥𝑥 =
𝜋𝑟3𝑡

2
 

Example: 

Determine the direct stress distribution in the thin-walled Z-section shown produced by 

a positive bending moment Mx .  

 

Mx = 1000 Kg.mm, h = 40 mm, t = 1mm 

My = 0 

 

 

Solution: 

xi701
Rectangle

xi701
Typewriter
48



 

 

 

The section is anti-symmetrical with its centroid at the mid-point of the vertical web. Therefore, 

the direct stress distribution is given by 

 

Where, for this problem  

 

The section properties are calculated as follows  

 

Substituting these values in Eqs. (ii) give, 

 

 

These expression when substituted in Eq. (i) give 

 

 

On the top flange  y= 20 ,  0 ≤ 𝑥 ≤  20  (y=h/2  0 ≤ 𝑥 ≤ ℎ/2 )   and the distribution of direct 

stress is given by  

�̅�𝑥 = 2286 kg mm    ,        �̅�𝑦 = −857 kg mm 

      

 

    

𝜎𝑧 = 0.107𝑦 − 0.161𝑥 
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At point (1)   x = 20 mm,   y= 20 mm 

 

 

At point (2)   x = 0 mm,     y=20 mm 

 

 

 

 

 

At point (3)  x = 0 mm,   y= -20 mm 

 

 

At point (4)  x= -20 mm,   y= -20 mm 

 

 

The distribution in the lower flange may be deduced from anti-symmetry , the complete 

distribution is then as shown. 

𝜎𝑧1 = 1.08 kg mm2⁄  

𝜎𝑧 = 0.107 ∗ 20 − 0.161 ∗ 20 

𝜎𝑧1 = −1.08 kg mm2⁄       (Compressive) 

𝜎𝑧 = 0.107 ∗ 20 − 0.161 ∗ 0 

𝜎𝑧2 = +2.14  kg/mm2       (Tensile) 

 

𝜎𝑧3 = 0.107 ∗ (−20) 

𝜎𝑧 = 0.107 ∗ 𝑦 

𝜎𝑧4 = 0.107 ∗ (−20) − 0.161 ∗ (−20) 

𝜎𝑧3 = −2.14  kg/mm2  (Compression) 

𝜎𝑧4 = +1.08  𝑘𝑔/𝑚𝑚2    (Tensile) 
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H.W 

A thin-walled, cantilever beam of unsymmetrical cross-section supports shear loads at  

its free end as shown in Fig. P.16.2. Calculate the value of direct stress at the extremity 

of the lower flange (point A) at a section half-way along the beam if the position of the 

shear loads is such that no twisting of the beam occurs. 

 

 

                                                                                              Ans. 194.7 N/mm2 (tension). 
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3.3 
General case of loading  

 
Consider the element shown, where  

δz  : element of length in z-direction. 

Sy  : shear load in y-direction. 

Mx : bending moment about x-axis. 

wy  : distributed load of varying intensity. 

 

As the element length is small, then the intensity is assumed constant.  

(Mx) and Sy are +ve  in the direction shown. 

There for, for equilibrium of the element in the y direction 
(

𝑆𝑦 +
𝜕𝑆𝑦

𝜕𝑧
𝛿𝑧

)

+ 𝑤𝑦𝛿𝑧 − 𝑆𝑦 = 0 

From which,   

𝑤𝑦 = −
𝜕𝑆𝑦

𝜕𝑧
 

Taking moments about   A  

 
(𝑀𝑥 +

𝜕𝑀𝑥

𝜕𝑧
𝛿𝑧) − (𝑆𝑦 +

𝜕𝑆𝑦

𝜕𝑧
𝛿𝑧) 𝛿𝑧−𝑤𝑦

(𝛿𝑧)2

2
− 𝑀𝑥 = 0 

Chapter  Four
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Or , when second order terms are neglected, 

𝑆𝑦 =
𝜕𝑀𝑥

𝜕𝑧
 

Combine these results into a single expression  

−𝑤𝑦 =
𝜕𝑆𝑦

𝜕𝑧
=

𝜕2𝑀𝑥

𝜕𝑧2
 

Similarly for loads in the xz plane  

−𝑤𝑥 =
𝜕𝑆𝑥

𝜕𝑧
=

𝜕2𝑀𝑦

𝜕𝑧2
 

 

If it assumed that a parameter 𝑆�̅� bears the same relationship to �̅�𝑥 as 𝑆𝑦 does to 𝑀𝑥 then 

 

𝑆𝑦
̅̅ ̅ =

𝑆𝑦 − 𝑆𝑥𝐼𝑥𝑦/𝐼𝑦𝑦

1 − 𝐼𝑥𝑦
2 /𝐼𝑥𝑥𝐼𝑦𝑦

 
 

In similar fashion   

𝑆𝑥
̅̅ ̅ =

𝑆𝑥 − 𝑆𝑦𝐼𝑥𝑦/𝐼𝑥𝑥

1 − 𝐼𝑥𝑦
2 /𝐼𝑥𝑥𝐼𝑦𝑦

 
 

Parameters  �̅�𝑦 and �̅�𝑥 are related to load intensities �̅�𝑦 and �̅�𝑥 .  

𝑤𝑥̅̅̅̅ =
𝑤𝑥−𝑤𝑦𝐼𝑥𝑦/𝐼𝑥𝑥

1−𝐼𝑥𝑦
2 /𝐼𝑥𝑥𝐼𝑦𝑦

         and            𝑤𝑦̅̅ ̅̅ =
𝑤𝑦−𝑤𝑥𝐼𝑥𝑦/𝐼𝑦𝑦

1−𝐼𝑥𝑦
2 /𝐼𝑥𝑥𝐼𝑦𝑦

 
 

 

The parameters �̅�𝑥, �̅�𝑦, 𝑆�̅�, 𝑆�̅�, �̅�𝑥, �̅�𝑦 are often termed “effective” bending moments, shear 

forces and load intensities. 
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In this chapter, the deflections and stresses in thin open and closed tubes will be determined 

due to bending. The relations to determine the deflections and stresses are similar to those 

developed in bending of beams. 

  

 
Deflections due to bending 

 

The following relationships exist between loading, shearing force, and bending moment, slope 

and deflection of a symmetrical section beam for: 

𝑣 = 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑦 𝑑𝑖𝑟𝑐𝑡𝑖𝑜𝑛  

𝑑𝑣

𝑑𝑧
= 𝜃 = 𝑆𝑙𝑜𝑝𝑒  

𝑀 = 𝐸𝐼
𝑑2𝑣

𝑑𝑧2 = 𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡

 

𝑆 = 𝐸𝐼
𝑑3𝑣

𝑑𝑧3
= 𝑆ℎ𝑒𝑎𝑟𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 

𝑤 = 𝐸𝐼
𝑑4𝑣

𝑑𝑧4
= 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 

 

θ 

General beam deflection are caused primarily by the bending action of applied loads, where a beam's
cross section dimensions  are not small compared with its length.
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Deflection by Method of Singularity Function 

In cases where a beam is subjected to a combination of distributed loads, concentrated 

loads, and moments, using the method of double integration to determine the 

deflections of such beams is really involving, since various segments of the beam are 

represented by several moment functions, and much computational efforts are required 

to find the constants of integration. Using the method of singularity function in such 

cases to determine deflections is comparatively easier and relatively quick. This 

method of analysis was first introduced by Macaulay in 1919, and it entails the use of 

one equation that contains a singularity or half-range function to describe the entire 

beam deflection curve. A singularity or half-range function is defined as follows: 

 

       {
                               

                            
 

 

Where; 

z - Coordinate position of a point along the beam. 

a - Any location along the beam where discontinuity due to bending occurs. 

n- The exponential values of the functions; this must always be greater than or equal 

to zero for the functions to be valid. 

 

The above outlined definition implies that the quantity (z - a) equals zero or vanishes 

if it is negative, but it is equal to (z - a) if it is positive.  Integration of the Macaulay 

function follows the same rules as for ordinary functions; 

 

∫           
        

   
    

 
 

Note; That the square brackets must be retained during the integration. The arbitrary 

constants are found using the boundary conditions. 
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Example  

Determine the position and magnitude of the maximum upward and downward 

deflections of the beam shown in Figure below. 

 

 

A consideration of the overall equilibrium of the beam gives the support reactions; 

thus 

 

Using the method of singularity functions and taking the origin of axes at the left-hand 

support, we write down an expression for the bending moment, M, at any section Z 

between D and F, the region of the beam furthest from the origin 

 

Integrating Eq. (ii) and retaining the square brackets we obtain 
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By inspection of the figure above it seems likely that the maximum downward 

deflection will occur in BC. At B, using Eq. (v) 

 

which is positive. Therefore, the maximum downward deflection does occur in BC 

and its exact position is located by equating v to zero for any section in BC. Thus, 

from Eq. (v) 
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In a similar manner it can be shown that the maximum upward deflection lies 

between D and F at z = 3.42a and that its magnitude is 

 

Example 

Determine the deflected shape of the beam shown in Figure below 

 

In this problem an external moment M0 is applied to the beam at B. The support 

reactions are found in the normal way and are 
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The bending moment at any section Z between B and C is then given by 
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Where, �̅�𝑥, �̅�𝑦 , 𝑆�̅�   and �̅�𝑦 are effective moments and effective shear forces, 

respectively.
 

{
𝑢′′

𝑣′′} =  
−1

𝐸 (𝐼𝑥𝑥𝐼𝑦𝑦 − 𝐼𝑥𝑦
2

)
[
−𝐼𝑥𝑦 𝐼𝑥𝑥

𝐼𝑦𝑦 −𝐼𝑥𝑦
] {

𝑀𝑥

𝑀𝑦
} 

 

 

{
𝑀𝑥

𝑀𝑦
} =  −𝐸 [

𝐼𝑥𝑦 𝐼𝑥𝑥

𝐼𝑦𝑦 𝐼𝑥𝑦
] {𝑢′′

𝑣′′} 

 

 
𝑀𝑥 = −𝐸𝐼𝑥𝑦𝑢′′ −  𝐸𝐼𝑥𝑥𝑣′′  

 

 
𝑀𝑦 = −𝐸𝐼𝑦𝑦𝑢′′ −  𝐸𝐼𝑥𝑦𝑣′′  

 
𝑢′′ =

𝑀𝑥 𝐼𝑥𝑦 − 𝑀𝑦 𝐼𝑥𝑥

𝐸 (𝐼𝑥𝑥𝐼𝑦𝑦 − 𝐼𝑥𝑦
2

)
                          𝑣′′ =

𝑀𝑦 𝐼𝑥𝑦 − 𝑀𝑥 𝐼𝑦𝑦

𝐸 (𝐼𝑥𝑥𝐼𝑦𝑦 − 𝐼𝑥𝑦
2

)
  

 
�̅�𝑥 =

𝑀𝑥 − 𝑀𝑦 𝐼𝑥𝑦 𝐼𝑦𝑦⁄

(1 − 𝐼𝑥𝑦
2 𝐼𝑥𝑥𝐼𝑦𝑦⁄ )

                �̅�𝑥 =
𝑀𝑦 − 𝑀𝑥 𝐼𝑥𝑦 𝐼𝑥𝑥⁄

(1 − 𝐼𝑥𝑦
2 𝐼𝑥𝑥𝐼𝑦𝑦⁄ )

                   
   

 

𝑆𝑥
̅̅ ̅ =

𝑆𝑥 − 𝑆𝑦 𝐼𝑥𝑦/𝐼𝑥𝑥

1 − 𝐼𝑥𝑦
2 /𝐼𝑥𝑥𝐼𝑦𝑦

                                𝑆𝑦
̅̅ ̅ =

𝑆𝑦 − 𝑆𝑥𝐼𝑥𝑦/𝐼𝑦𝑦

1 − 𝐼𝑥𝑦
2 /𝐼𝑥𝑥𝐼𝑦𝑦

 

                                                                                                                             

      

 

 

For unsymmetrical section with load acting in x and y directions the relationships will be:

 
𝑢 = 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑥 𝑑𝑖𝑟𝑐𝑡𝑖𝑜𝑛                        𝑣 = 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑦 𝑑𝑖𝑟𝑐𝑡𝑖𝑜𝑛 

�̅�𝑥 = 𝐸𝐼𝑥𝑥
𝑑2𝑣

𝑑𝑧2
= 𝐸𝐼𝑣′′                                       �̅�𝑦 = 𝐸𝐼𝑦𝑦

𝑑2𝑢

𝑑𝑧2
= 𝐸𝐼𝑢′′   

�̅�𝑥 = 𝐸𝐼𝑦𝑦
𝑑3 𝑢

𝑑𝑧3
                                             𝑆�̅� = 𝐸𝐼𝑥𝑥

𝑑3𝑣

𝑑𝑧3
                          

Deflections due to unsymmetrical bending

We noted that a beam bends about its neutral axis whose inclination to arbitrary centroid axes 
is determined. Beam deflections, therefore, are always perpendicular in direction to the neutral 
axis
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Example  

Determine the horizontal and vertical components of the tip deflection of the 

cantilever shown in Figure. The second moments of area of its unsymmetrical section 

are Ixx, Iyy and Ixy 

 

From Equations; 
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AL-Farahidi University 

College of Technical Eng. 

4th Year / Aeronautical Eng./A/C Structure 

Chapter Five  

 

4.1 Shear of open tubes (section beams) 

In considering the shear stress distribution in thin-walled open section beams we shall 

make identical assumptions regarding the calculation of beam section; 

 Shear stresses in the plane of the cross-section and parallel to the tangent at any point 

on the beam wall are constant across the thickness whereas shear stresses normal to 

the tangent are negligible as shown in Fig.4.1. 

 The wall thickness can vary round the section but is constant along the length of the 

member 

 Generally in the analysis, the axial constraint effects are negligible. 

 The squares and higher powers of the thickness t are neglected in the calculation of 

section constants. 

 The hoop stress (  ) is usually zero for open tube, while for closed tube, if there is an 

internal pressure, the hoop stress (  ) will be not equal to zero. 

 

 
                                 Fig.4.1. Assumption in thin walled open section beam 
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Fig.4.2 shows a length of a thin-walled beam of arbitrary section subjected to 

shear loads    and    which are applied such that no twisting of the beam occurs.  

 
                                 Fig.4.2. shear of a thin walled open section beam 

In addition to shear stresses, direct stresses due to the bending action of the shear loads 

are present so that an element δs x δz of the beam wall is in equilibrium under the 

stress system shown in Fig.4.3.The shear stress   is assumed to be positive in the 

positive direction of s, the distance round the profile of the section measured from an 

open edge. Although we have specified that the thickness t may vary with s, this 

variation is small for most thin-walled sections so that we may reasonably make the 

approximation that t is constant over the length  s. 

 

 
                                        Fig.4.3. Equilibrium of beam element 
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To work in terms of shear flow to which we assign the symbol         the shear 

stress system represented in terms of q. Thus for equilibrium of the element in the    

direction 

 
 

Which gives 

 

 
 

Again we assume that the direct stresses are given so that 

 

 
 

Integrating this expression from       (where       on the open edge of the 

section) to any point s we have 
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The shear stress at any point in the beam section wall is obtained by dividing the 

shear flow q, by the appropriate wall thickness. Thus 

 

 
 

Example. Determine the shear flow distribution in the thin-walled Z-section 

beam shown in Fig.4.4 produced by a shear load   , applied in the plane of the 

web 

 
                  Fig.4.4. beam section 

 

The origin for our system of reference axes coincides with the centroid of the 

section at the mid-point of the web. The centroid is also the center of antisymmetry 

of the section so that the shear load, applied through this point, causes no twisting 

of the section and the shear flow distribution is given by;  

 
The second moments of area of the section about the x and y axes have previously 

been calculated  
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Substituting these values in Eqn. (i) we obtain 
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       Fig.4.5. Shear flow distribution in beam section  

 

 

 

xi701
Typewriter
71



 
 

4.2 Shear center of open section 

The shear center is that point in the cross section through which the shear loads 

produce no twisting. It is also the center of twist when torsional loads are applied. As 

a rule, if a cross - section has an axis of symmetry, then the shear center must lie on 

that axis and in cruciform or angle sections show in Fig.4.6, the shear center is 

located at the intersections. It is important to define the position of the shear center 

because although most wings are not loaded at this point, if we know its location, we 

can represent the shear loads applied as combinations of shear loads through the shear 

center and a torque. 

 

               
              Fig.4.6. Special cases of shear center position  

 

 

To calculate the shear center, determine the moment generated by the shear flow about 

an appropriate point in the cross section. This moment is equal to the moment generated 

by the applied shear force about this same point. 

 

∑         ∑            

 

 

Note: In the case of unsymmetrical sections, the coordinates (s  , s  ) of the shear 

center have to be found. This is best achieved by first applying a vertical shear 

force   , determining s  , then applying a horizontal force    determining s  . 

 

 

Example .Determine the position of the shear center of the thin-walled channel 

section shown in Fig. 4.7. 
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                                        Fig.4.7. Channel section beam 

 

The shear center S lies on the horizontal axis of symmetry at some distance    say, 

from the web. If an arbitrary shear load,     is applied through the shear center, then 

the shear flow distribution is given and the moment about any point in the cross-

section produced by these shear flows is equivalent to the moment of the applied shear 

load about the same point. 
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The solution of this type of problem may be reduced in length by giving some 

thought to what is required. We are asked, in this case, to obtain the position of the 

shear center and not a complete shear flow distribution. From symmetry it can be 

seen that the moments of the resultant shear forces on the upper and lower flanges 

about the mid-point of the web are numerically equal and act in the same sense. 

Furthermore, the moment of the web shear about the same point is zero. Therefore it 

is only necessary to obtain the shear flow distribution on either the upper or lower 

flange for a solution. 

 
 

Of the web to the anticlockwise moment of the applied shear load about the same 

point gives 

 

 
 

 

In the case of an unsymmetrical section, the coordinates (   ,    ) of the shear  center 

referred to some convenient point in the cross-section are obtained by first determining 

   in a similar manner to that described above and then calculating    by  applying a 

shear load    through the shear center.  
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4.3 Shear of closed tubes (section beams) 

The solution for a shear loaded closed section beam follows a similar pattern to that 

described in section of shear of open tube but with two important differences; 

 The shear loads may be applied through points in the cross-section other than the 

shear center(shear loads may be applied through any point in cross-section) 

 The origin for s does not generally coincide with a known value of shear flow  

      (at the origin of  's', the value of shear flow       is unknown). 

 

 
                
                         Fig.4.8. Shear of a thin-walled closed section beam 

 

Look at arbitrary closed beam Fig.4.8, with applied shear forces    and     In general, 

cause direct bending stresses and shear flows, which are related by the equilibrium 

equation; 
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                           Fig.4.9. Resolving moments due to applied loads and shear flow 
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  4.4. Twist and warping of shear loaded 

If a shear load is not applied at the shear center, the closed beam section will both 

twist and have an out of plane axial displacement (warp).  From equation; shear flow 

is define by          

 

 
 

Integrating this equation around the cross-section wrt 's' gives: 

 

 
Which is the rate of twist of the beam wrt z. 

 

4.5. Shear center of close section 

The position of the shear center for a beam loaded as shown in Fig.4.10 , can be found 

by using equation ; 

 

 
Where: 

                   = vertical distance from x-axis to shear centre from reference axis 

                 = horizontal distance from y-axis to shear center from reference axis 
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Fig.4.10 determining location of shear center for closed beam section 

 

 

 

 
 

 
With these equations the shear flow , shear center, the rate of twist, and warping in a 

closed  beam section can now be determined. 
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Example. A thin-walled, closed section beam has the singly symmetrical, trapezoidal 

cross-section shown in Figure below.  Calculate the distance of the shear center from the 

wall AD. The shear modulus G is constant throughout the section 
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Al-Farahidi University 

College of Technical Eng. 

4th Year / Aeronautical Eng. A/C Structure 

Chapter Six 

 

STRUCTURAL IDEALISATION 

In the work done so far, the aircraft structural components analyzed have been 

relatively simple. However an aircraft wing (for example) can be made up of many 

cell compartments. Each section of the wing would be covered by a thin skin, and the 

skins would be reinforced by many stringers of  Z, C or T section. The analysis of 

such a structure would be extremely complex and time consuming. In order to 

simplify this, structural idealisation should be carried out. 

1. The longitudinal stiffeners and spar flanges carry only axial stresses 

2. The web, skin and spars webs carry only shear stresses 

3. The axial stress is constant over the cross section of each longitudinal stiffener 

4. The shearing stress is uniform through the thickness of the webs 

5. Transverse frames and ribs are rigid within their own planes  

In idealising a structural component by following these Five Points the new 

simpler structure looks something like this: 

 

 

                                   Figure 6.1: Original and Idealised wing sections 
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For which: 

 The stiffeners are represented by circles called booms, which have a 

concentrated mass in the plane of the skin. 

 The direct stresses are calculated at the centroid of these booms and are 

assumed to have constant stress through their cross-section. 

 Shear stresses are assumed uniform through the thickness of the skins and webs. 

 The direct stress carrying capability of skin is represented as an addition to 

existing booms or as additional separate booms. 

Because the skin can carry some direct load, usually tensile (although some can be 

carried in compression but this is determined by the buckling load of the skin). 

We now need to look at how these idealisation techniques can be applied: 

 

Figure 6.2: Typical stiffened panel.  a) Actual panel, b) Idealised panel with same 

number of stiffeners and booms,  c) Idealized panel with reduced boom  number, d) 

Further Idealised panel with all stiffener and bending carrying areas lumped into two 

booms. 

To idealize a structure you can: 

 Replace the spar web by replacing its area to the major booms 

 Reduce the number of stiffeners or booms by combining the stiffener mass with       

          that of the skin into one boom 

xi701
Typewriter
84



 
 

REMEMBER:  When idealising a structure, the Elastic Characteristics of the    

idealised structure must be the same as for the original structure. 

Idealised Sheet to Support Tensile Load 

 

           

 

Figure 6.3: Actual sheet to be 

Idealised. 
           Figure 6.4: Idealised structure. 

 

Let; the thickness of the skin is defined as: 

       tD =  Actual skin thickness t, if skin resists totally direct load 

       tD =   Percentage of t, if partially resists applied load 

       tD =  0  if skin only able to resist shear load 

 

In order to idealise the structure of Figure 6.3 into that of Figure 6.4. Two things 

should be considered, Force (stress) equilibrium and Compatibility (displacement). 

 

In the real structure the direct stress is determined using: 

 

 
and its elongation is given by : 

 

In the idealised structure, however, the direct stress is given by: 
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And its elongation is given by: 

 
Since equations (6.2) and (6.4) should give the same elongation, and then we can 

define the relationship: 

 
 

If you look at the stress in the booms they are the same as those of the original 

structure. 

 

Idealised Sheet to Support Bending Moment 

 

                  Figure 6.5: Actual sheet to be idealised with applied bending moment  

The stress in this sheet is given by: 

 

The second moment of area for the idealised booms is (using parallel axis theorem) is 

given by: 

 

and its stress is given by : 

 

Since equations 6.6 and 6.8 should give the same maximum stresses then: 
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As can be seen by this equation (i) and (ii), a different idealised boom area equation 

is required for a different loading condition. 

Idealised Sheet to Support Direct Load and Bending Moment 

The stress distribution for a combined loading case with a direct load and a bending 

moment looks like Figure 6.6. 

 

              Figure 6.6: Actual sheet supporting direct load and bending moment 

 

In the idealised structure, the maximum and minimum stresses need to be carried by 

the booms as actual direct stresses as shown in Figure 6.7. 

 

Figure 6.7: Idealised sheet supporting maximum stresses in booms. 

 

Equating the direct loads along the z-axis gives that: 
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If the neutral axis in the idealised structure is in the same position as in the original 

sheet, the bending moment carried by the idealised structure must be the same as 

that carried by the real structure. 

Equating moments about neutral plane gives the following: 

 
multiplying by 2 gives: 

 
Adding these equations and simplifying, gives: 

 

 
 

By calculating the bending stresses, the structure can then be idealised. 

WARNING:    There is a problem with equations above. It has to do with idealising 

sections of skin very close to the neutral axis of the cross section, see Figure 6.8. 

 

Figure 6.8: Skin segment very close to Neutral Axis to be idealised into booms i & j 

he equation can be generalized in the form of: 
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Idealised Sheet to Support Direct Compressive Load 
When supporting a compressive load, the metal sheet is usually critical in buckling. 

Because of this, only a small fraction of its width 'b' is effective in compression. 

Experimental research has led to the derivation of the following equations for the 

effective area of skin in compression. 

 

                                Figure 6.9: Sheet to be idealized in compression. 

 

  
                     Figure 6.10: Idealised sheet. 

Area of boom: 

                              
Where 'C' is the effective width of metal in compression, given by: 

 

 

Note:  Although the idealisation given by equations for a metal sheet in compression 

is valid, it is sometimes better to idealise the structure using the equations   derived for 

the other three load cases. When the stresses on the metal skin are known   we can 

then use critical buckling stresses for thin metal sheets to determine if they will be 

effective in compression. 
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Example:  Part of a wing section is in the form of a two-cell box shown. All the 

vertical spar webs are connected to the skins through spar caps, all with cross - 

sectional areas of 300 mm
2
. Idealise the section into direct stress carrying booms and 

shear stress only carrying skin when the wing is subjected to an applied bending 

 moment Mx = -150 kNm. Position the booms at the spar/skin junctions. 

 

        Figure 6.11: Wing section to be idealized, subject to a bending moment  

Since all skin panels experience both a tensile/compressive load together with a 

bending moment, equation is the ones to use when idealising this section. 

Now, from symmetry: B1 = B6, B2 = B5 and B3 = B4, saving us some calculations. 

 

Lets start with determining the area of boom 1.This boom must have first of all the 

area of spar cap 1, which is 300 mm
2
, together with the area contributions of the two 

adjacent skins. Therefore: 

 

Since the equation for stress for a beam with symmetrical cross section is: 

 

Then by substituting this equation for the different stresses, their rations simplifies to 

just the rations of their vertical distances. 

 

                         
Which gives: 

        

So    B1 = B6 = 891.67 mm
2
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For boom 2 we have to consider the contribution of the two spar caps, and the three 

adjacent skins. Giving: 

 

When substituting for the bending moment equation it becomes: 

 

So    B2 = B5 = 1791.67 mm
2
 

And for boom 3 we only have one spar cap and two adjacent skins: 

 

and when substituting for the bending stress equation: 

 

 

giving that    B3 = B4 = 1050 mm
2
  So the idealised wing now looks like this: 

 

 

 
 

                 Figure 6.12: Final idealised wing with boom areas marked. 
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Example:    The singly symmetrical fuselage cross-section is subjected to a bending 

moment  Mx = 100 kNm. If all direct stresses are carried by the booms, determine the 

average direct stress in each boom. 

 

 

 
 

         Figure 6.13: Idealised fuselage cross section. 

 

Because the section is symmetrical about the y-axis (Ix,y = 0), and My = 0, the effective 

bending moment equations reduces to: 

 

a)   Determine location of centroid  

 

 

b)   Determine sectional properties and stresses in booms 

Now that we have the position of the neutral axis, the best way to determine the 

stresses in each boom is by using a table 

 

Boom y (mm) B (mm
2
) Ixx = By

2
 (mm

4
) z (MPa) 

1 661.5 640 2.8005e+08 35.67 

2 601.5 600 2.1708e+08 32.43 
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Note: Because of symmetry, this table doesn't contain values for the booms on the left 

hand   side of the y-axis. However when calculating the second moment of area Ixx, the 

values  of Ixx for booms 2 - 8 were multiplied by 2 when doing the summation. 

 

Shear of Open Section Beams  

The equation for shear flow for an open beam section was found by: 

 

From its derivation, the value of 't' was the direct stress carrying thickness 'tD' of the 

skin. Such that it could either be equal to: 

 tD = t, if the skin was fully effective in carrying direct stress,  Or   

 tD = 0, if skin was assumed to carry only shear stresses.  

  

  So: 

 

So that if we are idealising the beam's cross section, based on our idealisation 

technique, the value of 'tD' may or may not be equal to zero. 
 

This equation, however does not consider the effect of the idealised booms to the 

overall shear flow. To account for this, we need to consider the equilibrium of one 

such boom. 

 

3 421.5 600 1.0660e+08 22.73 

4 229.5 600 3.1602e+07 12.37 

5 26.5 620 4.3540e+05 1.43 

6 -202.5 640 2.6244e+07 -10.92 

7 -394.5 640 9.9603e+07 -21.27 

8 -500.5 850 2.1293e+08 -26.99 

9 -538.5 640 1.8559e+08 -29.04 

   Ixx =1.8546e+09  
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  Figure 6.14: Shear loaded open beam with booms, and equilibrium of i
th

 boom. 

Summing the forces along the length of the elemental length of the boom gives: 

 

this equation simplifies to : 

 

but since the direct stress is given by: 

 

then substituting for it gives: 

 

Giving the change in shear flow induced in the skin by the presence of a boom. If 

several booms were present, their presence becomes an additive one, such that for a 

beam with 'n' booms becomes: 
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But because in an idealised structure the skin only carries the shear stresses, then 

equation   can be simplified to have only the summation terms. To give: 

 

A simpler way of thinking of equation is by looking at the shear flow in a skin 

segment i due to the shear flow in skin segment i-1 and the change of shear flow due 

to the boom k separating these two skin segments, Figure 7.17. 

 

 

Figure 6.15: Sketch of skin segments i and i-1 and boom k to show how the shear flow 

is determined. 

 

In general terms, the change in shear flow between any two skin elements (i and i-1) 

due to the area of boom k of coordinates xk and yk about the structures' centroid is: 

 

The shear flow in skin segment i is then a function of the shear flow in the previous 

skin segment (i - 1) and the change in shear flow due to boom k(  qk),  

 

Note:    Because of the idealisation process, the shear flow in any skin section 

between any two booms always has a constant value. 
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Example 9:   Calculate the shear flow in the following channel section. The skin is 

only effective in shear (tD=0), area of all booms 1 & 4 = 250 mm
2,
 areas of booms 

 2& 3 = 350 mm
2
. 

 

 

                    Figure 6.16: Open channel with force applied through shear center. 

 

Because the structure is symmetrical Ixy = 0 and as we are only applying a vertical 

load, equation above becomes: 

 

 
 

The second moment of area Ixx is: 

 

 

On the RHS of boom 1, qs = 0, so the change in shear flow due to boom 1 is: 

1) 
 

2) 
 

3) 
 

4) 
 

 

 

this shear flow is constant until boom 2, where: 

1) 
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2) 
 

3) 
 

4) 
 

 

which is constant until boom 3, where: 

1) 
 

2) 
 

3) 
 

4) 
 

 

and you can see that after boom 4, q = 0 

 
. 

 

                        Figure 6.17: Shear flow distribution around channel. 

 

Shear of Closed Section Beams 
The derivation of the equation to determine this shear flow is identical as the analysis 

for open beam sections, making equation look like this: 
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Since the structure has been idealised, then equation is simplified to: 

 

 

 
  Where: 

  qbi -  is the open beam shear flow of skin segment i, and which can be calculated                 

             using equation above. 

qs,0 -   in the residual shear flow due to making the closed beam into an open 

beam section. It can be calculated if we know the location of the applied load, or if we 

are trying to determine the shear center. 

Example: Determine shear flow in the following wing structure with an applied 

vertical load in the plane of booms 3 and 6. This structure has been idealised into 

direct stress carrying booms and shear only stress skin ( tD = 0). Boom areas are: B1 

 = B8 = 200 mm
2
, B2 = B7 = 300 mm

2
, B3 = B6 = 400 mm

2
, B4 = B5 = 150 mm

2
. 

 

        Figure 6.18: Closed wing section with applied shear force between booms 3 & 6 

 

Because the section is symmetrical, Ixy = 0. Skin carries only shear load, tD = 0 so use 

equation. Only a vertical load is applied, Sx=0. Reducing equation to: 

 

Where;         Sy = 15 kN 

 

  Ixx = 2x(200x25
2
 + 300x125

2
 + 400x125

2
 + 150x75

2
) = 23.813x10

6
 mm

4 
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Substituting this into the above equation gives: 

 

Where qb is the shear flow for an open section. Cutting the beam between sections 2 

and 3 and doing the analysis in a counter clockwise sense we get: 

 

 

 

 

 

 

 

 

 

It is now necessary to determine qs,0. This can be done by using equation above, 

because we know the position of the applied force. Or we could take moments 

anywhere about the line of action of the applied force; both these statements mean the 

same thing. 

 

Taking moments about point 3, gives: 

0 = ( q4,5x150x150 + q5,6xx158.11x237.17 + q6,7x300x250 + q7,8x412.31x315.3 + 

q8,1x50x700  + q1,2x412.31x72.76) + 2x165,000qs,0 

 

giving that qs,0 = -8.08 N/mm From equation (ii) above we have that    qs = qb + qs,0 , 

so: 

           qs12 = 23.62 - 8.08            = 15.54 N/mm 

          qs23 = 0 - 8.08              = -8.08 N/mm 
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            qs34 = -31.5 - 8.08        = - 39.58 N/mm 

            qs45 = -38.59 - 8.08      = - 46.67 N/mm 

            qs56 = -31.5 - 8.08        = - 39.58 N/mm 

           qs67 = 0 - 8.08              = - 8.08 N/mm 

           qs78 = 23.62 - 8.08       = 15.54 N/mm 

qs81 = 26.67 - 8.08     = 18.59 N/mm 

 

Figure 6.19: Shear flow distribution of loaded closed wing section 
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4th Year / Aeronautical Eng. / A/C Strucutre 

Chapter Seven: Analysis of the Fuselage  section  

 

Aircraft fuselages consist of thin sheets of material stiffened by large numbers 

of longitudinal stringers together with transverse frames. Generally, they carry 

bending moments, shear forces and torsional loads which induce axial stresses 

in the stringers and skin together with shear stresses in the skin; the resistance 

of the stringers to shear forces is generally ignored. Also, the distance between 

adjacent stringers is usually small so that the variation in shear flow in the 

connecting panel will be small. It is therefore reasonable to assume that the 

shear flow is constant between adjacent stringers so that the analysis 

simplifies to the analysis of an idealized section in which the stringers/booms 

carry all the direct stresses while the skin is effective only in shear. The direct 

stress carrying capacity of the skin may be allowed for by increasing the 

stringer/boom areas. The analysis of fuselages therefore involves the 

calculation of direct stresses in the stringers and the shear stress distributions 

in the skin. The following previous Eqs. Were used previously, 

 

   (7.1) 

 

     (7.2) 

                                    (7.3) 
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(7.4) 

(7.5) 

     
                                                                                                      (7.6) 

 

 

7.1 Bending Stresses 

The skin/stringer arrangement is idealized into one comprising booms and 

skin. The direct stress in each boom is then calculated using either Eqs. (7.1) 

or (7.2) in which the reference axes and the section properties refer to the 

direct stress carrying areas of the cross-section. 

 

 

Example 7.1: The fuselage of a light passenger carrying aircraft has the 

circular cross-section shown in Fig. 7.1(a). The cross-sectional area of each 

stringer is 100 mm2 and the vertical distances given in Fig. 7.1(b) are to the 

mid-line of the section wall at the corresponding stringer position. If the 

fuselage is subjected to a bending moment of 200 kNm applied in the vertical 

plane of symmetry, at this section, calculate the direct stress distribution. 

 

 

The section is first idealized using the method described in Section 20.3. As 

an approximation we shall assume that the skin between adjacent stringers is 

flat so that: 
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                                  Fig. 7.1 

we may use either Eq. (7.3) to determine the boom areas. From symmetry 

B1 =B9, B2 =B8 =B10 =B16, B3 =B7 =B11 =B15, B4 =B6 =B12 =B14 and 

B5 =B13. From Eq. (7.3) 
 

 

Similarly, B2 =216.6 mm2, B3 =216.6 mm2, B4 =216.7 mm2.We note that 

stringers 5 and 13 lie on the neutral axis of the section and are therefore 

unstressed; the calculation of boom areas B5 and B13 does not then arise. For 

this particular section Ixy =0 since Cx (and Cy) is an axis of symmetry. 

Further, My =0 so that Eq. (7.1) reduces to 
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The solution is completed in Table 7.1. 

 
 

 

 

7.2 Shear Flow Distribution 

For a fuselage having a cross-section of the type shown in Fig. 7.1(a), the 

determination of the shear flow distribution in the skin produced by shear is 

basically the analysis of an idealized single cell closed section beam. The 

shear flow distribution is therefore given by Eq. (7.4) in which the direct stress 

carrying capacity of the skin is assumed to be zero, i.e. tD =0, thus 
 

 

 
 

 

 
 

Equation (7.5) is applicable to loading cases in which the shear loads are not 

applied through the section shear centre so that the effects of shear and torsion 

are included simultaneously. Alternatively, if the position of the shear centre 

is known, the loading system may be replaced by shear loads acting through 

the shear centre together with a pure torque, and the corresponding shear flow 

distributions may be calculated separately and then superimposed to obtain 

the final distribution. 

 

Example 7.2: The fuselage of Example 7.1 is subjected to a vertical shear 

load of 100 kN applied at a distance of 150 mm from the vertical axis of 
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symmetry as shown, for the idealized section, in Fig. 7.2. Calculate the 

distribution of shear flow in the section. 

 

As in Example 7.1, Ixy =0 and, since Sx =0, Eq. (7.4) reduces to 

 

 
 

 
Fig. 7.2 

 

Table 7.2 
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The first term on the right-hand side of Eq. (ii) is the ‘open section’ shear flow 

qb. We therefore ‘cut’one of the skin panels, say 12, and calculate qb. The 

results are presented in Table 7.2. Note that in Table 7.2, the column headed 

Boom indicates the boom that is crossed when the analysis moves from one 

panel to the next. Note also that, as would be expected, the qb shear flow 

distribution is symmetrical about the Cx axis. The shear flow qs,0 in the panel 

12 is now found by taking moments about a convenient moment 

centre, say C. Therefore, from Eq. (7.6): 
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in which A=π×381.02 =4.56×105 mm2. Since the qb shear flows are constant 

between the booms, Eq. (iii) may be rewritten in the form (see Eq. (7.7)) 

 

 

in which A12, A23, . . . , A161 are the areas subtended by the skin panels 12, 

23,…, 16 l at the centre C of the circular cross-section and anticlockwise 

moments are taken as positive. Clearly A12 =A23= · · · =A16 l 

=4.56×105/16=28 500 mm2. Equation (iv) then becomes 

 

 

 
Substituting the values of qb from Table 7.2 in Eq. (v), we obtain 

 

 
from which qs,0 = 32.8 N/mm (acting in an anticlockwise sense) The complete 

shear flow distribution follows by adding the value of qs,0 to the qb shear flow 

distribution, giving the final distribution shown in Fig. 7.3. The solution may 

be checked by calculating the resultant of the shear flow distribution parallel 

to the Cy axis. Thus 
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Fig. 7.3 

7.2 Shear Flow Due to Torque 

 

A fuselage section is basically a single cell closed section beam. The shear 

flow distribution produced by a pure torque is therefore given by: 

 

 
(7.8) 

It is immaterial whether or not the section has been idealized since, in both 

cases, the booms are assumed not to carry shear stresses. Equation (7.8) 

provides an alternative approach to that illustrated in Example 7.2 for the 

solution of shear loaded sections in which the position of the shear centre is 

known. In Fig. 7.1 the shear centre coincides with the centre of symmetry so 

that the loading system may be replaced by the shear load of 100 kN acting 

through the shear centre together with a pure torque equal to 100×103 

×150=15×106 Nmm as shown in Fig. 7.4. The shear flow distribution due to 

the shear load may be found using the method of Example 7.2 but with the 

left-hand side of the moment equation (iii) equal to zero for moments about 

the centre of symmetry. Alternatively, use may be made of the symmetry of 

the section and the fact that the shear flow is constant between adjacent 
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booms. Suppose that the shear flow in the panel 21 is q2 1. Then from 

symmetry and using the results of Table 7.2 

 

 

Fig. 7.4 
The resultant of these shear flows is statically equivalent to the applied shear 

load so that 
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acting in an anticlockwise sense completely around the section. This value of 

shear flow is now superimposed on the shear flows produced by the shear 

load; this gives the solution shown in Fig. 7.3, i.e. 

 

 

 
 

7.4 Cutouts in Fuselage 

 

 

So far we have considered fuselages to be closed sections stiffened by 

transverse frames and longitudinal stringers. In practice it is necessary to 

provide openings in these closed stiffened shells for, for example, doors, 

cockpits, bomb bays, windows in passenger cabins, etc. These openings or 

‘cut-outs’ produce discontinuities in the otherwise continuous shell structure 

so that loads are redistributed in the vicinity of the cut-out thereby affecting 

loads in the skin, stringers and frames. Frequently these regions must be 

heavily reinforced resulting in unavoidable weight increases. In some cases, 

for example door openings in passenger aircraft, it is not possible to provide 

rigid fuselage frames on each side of the opening because the cabin space must 

not be restricted. In such situations a rigid frame is placed around the opening 

to resist shear loads and to transmit loads from one side of the opening to the 

other.  

The effects of smaller cut-outs, such as those required for rows of windows in 

passenger aircraft, may be found approximately as follows. Figure 7.5 shows 

a fuselage panel provided with cut-outs for windows which are spaced a 

distance l apart. The panel is subjected to an average shear flow qav which 

would be the value of the shear 
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Fig. 7.5 

flow in the panel without cut-outs. Considering a horizontal length of the 

panel through the cut-outs we see that 

 

 
(7.9) 

Now considering a vertical length of the panel through the cut-outs 
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(7.10) 

 
Substituting for q2 from Eq. (7.10) and noting that l =l1 +lw and d =d1 +dw, 

we obtain 
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Chapter Eight 

Wing with Multi cell section 

Wing sections consist of thin skins stiffened by combinations of stringers, spar webs, and caps 

and ribs. The resulting structure frequently comprises one, two or more cells, and is highly 

redundant. 

8.1 Bending 

Bending moments at any section of a wing are usually produced by shear loads at other sections 

of the wing. The direct stress system for such a wing section (Fig. 8.1) is given by: 

 

 

 

                                                                                                                           (8.1) 

In which the coordinates (x, y) of any point in the cross-section and the sectional properties are 

referred to axes Cxy in which the origin C coincides with the centroid of the direct stress 

carrying area. 

 

Fig. 8.1 

𝜎 = (
𝑀𝑦 𝐼𝑥𝑥 − 𝑀𝑥 𝐼𝑥𝑦

 𝐼𝑥𝑥 𝐼𝑦𝑦 −  𝐼2
𝑥𝑦 

) . 𝑥 + (
𝑀𝑥 𝐼𝑦𝑦 − 𝑀𝑦 𝐼𝑥𝑦

 𝐼𝑥𝑥 𝐼𝑦𝑦 −  𝐼2
𝑥𝑦 

) . 𝑦 
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Example 8.1 

The wing section shown in Fig. 8.2 has been idealized such that the booms carry all the direct 

stresses. If the wing section is subjected to a bending moment of 300 kN. m applied in a vertical 

plane, calculate the direct stresses in the booms. 

Boom areas: B1 = B6 =2580 mm2      B2 = B5 =3880 mm2    B3 = B4 3230 mm2 

 

Solution: 

The distribution of the boom areas is symmetrical about the horizontal x axis.  Ixy =0 , Mx=300 

kN.m and My =0, so that Eq. (8.1) becomes, 

 

 

 

 

 

 

In which, 

𝐼𝑥𝑥 = 2(2580 × 1652 + 3880 × 2302 + 3230 × 2002 ) = 809 × 102 𝑚𝑚2 

 

Hence,  

 

 

 

 

 

 
Fig. 8.2 

𝜎 = (
𝑀𝑥

 𝐼𝑥𝑥 
) . 𝑦 

𝜎 = (
300 × 106

809 ×  102
) . 𝑦    =   0.371 𝑦 
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8.2 Torsion 

The chord wise pressure distribution on an aerodynamic surface may be represented by shear 

loads (lift and drag loads) acting through the aerodynamic center together with a pitching 

moment MO. This system of shear loads may be transferred to the shear center of the section in 

the form of shear loads Sx  and Sy  together with a torque T. It is the pure torsion case that is 

considered here. In the analysis it is assumed that no axial constraint effects are present and 

that the shape of the wing section remains unchanged by the load application. In the absence 

of axial constraint there is no development of direct stress in the wing section so that only shear 

stresses are present. It follows that the presence of booms does not affect the analysis in the 

pure torsion case. 

The wing section shown in Fig. 8.3 comprises N cells and carries a torque T which generates 

individual but unknown torques in each of the N cells. Each cell therefore develops a constant 

shear flow qI,qII,……,qR, …..qN  given by: 

 

 
 

Fig. 8.3 

𝑇 = 2𝐴𝑞 

The total therefore  

𝑇 = ∑ 2𝐴𝑅
𝑁
𝑅=1 qR                                                                                                                                                         (7.2)   

 

This is sufficient for single cell. 
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For N cell section additional equations are required, this obtained by considering the rate of 

twist in each cell and the compatibility of displacement condition that all N cells possess the 

same rate of twist dθ/dz  

 

Consider the Rth cell of the wing section shown in Fig. 8.4. The rate of twist in the cell is:  
𝑑𝜃

𝑑𝑧
=

1

2𝐴𝑅𝐺
∮ 𝑞

𝑑𝑠

𝑡

 

𝑅
                                                       (8.3) 

 

The shear flow in Eq.  (8.3) is constant along each wall of the cell and has the value shown in 

Fig. 8.3 qR-1, qR, qR+1.  

Let 
𝑑𝑠

𝑡
=  𝛿   then Eq. (8.3) becomes: 

In general terms, this equation may be rewritten in the form, 

𝑑𝜃

𝑑𝑧
=

1

2𝐴𝑅𝐺
[−𝑞𝑅−1𝛿𝑅−1,𝑅 + 𝑞𝑅 𝛿𝑅 − 𝑞𝑅+1𝛿𝑅+1,𝑅]      (8.4) 

For Fig. 7.4, we can apply Eq. (8.4) as follows, 

𝑑𝜃

𝑑𝑧
=

1

2𝐴𝑅𝐺
[𝑞𝑅 𝛿12 + (𝑞𝑅 − 𝑞𝑅−1)𝛿23 + 𝑞𝑅𝛿34 + (𝑞𝑅 − 𝑞𝑅+1)𝛿41] 

Or, rearranging the terms in squares brackets 

𝑑𝜃

𝑑𝑧
=

1

2𝐴𝑅𝐺
[−𝑞𝑅−1𝛿23 + 𝑞𝑅 (𝛿12 + 𝛿23 + 𝛿34 + 𝛿41) − 𝑞𝑅+1𝛿41] 

In which 𝛿𝑅−1,𝑅 is 
𝑑𝑠

𝑡
 for the wall common to the Rth and (R-1) the cells, 𝛿𝑅 is 

𝑑𝑠

𝑡
 for all the 

walls enclosing the Rth cell and 𝛿𝑅+1,𝑅 is 
𝑑𝑠

𝑡
 for the wall common to the Rth and (R+1) the 

cells. 

Eq. (8.4) is applicable to multi cell sections in which the cells are connected consecutively. 

Cell I connected to cell II, cell II to cells I and III and so on. 

Note: if the skin panels and spar webs are fabricated from materials possessing different 

properties such that the shear modulus G is not constant. The analysis of such sections is 

simplified if the actual thickness t of a wall is converted to a modulus weighted thickness t* . 
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For the Rth cell of an N-cell wing section in which G varies from wall to wall, Eq. (8.4) takes 

the form: 

𝑑𝜃

𝑑𝑧
=

1

2𝐴𝑅
∮ 𝑞

𝑑𝑠

𝐺𝑡

 

𝑅
           (8.5) 

This equation may be rewritten as, 

𝑑𝜃

𝑑𝑧
=

1

2𝐴𝑅
∮ 𝑞

𝑑𝑠

(𝐺 𝐺𝑅𝐸𝐹⁄ )𝑡

 

𝑅
          (8.6) 

In which GREF is a convenient reference value of the shear modulus.  Eq. (8.6) is now rewritten 

as, 

𝑑𝜃

𝑑𝑧
=

1

2𝐴𝑅𝐺𝑅𝐸𝐹
∮ 𝑞

𝑑𝑠

𝑡∗

 

𝑅
          (8.7) 

 

Modulus – weighted thickness, 

 𝑡∗ = (
𝐺

𝐺𝑅𝐸𝐹
) 𝑡                                                                                                             (8.7a) 

Then  𝛿 =  ∫
𝑑𝑠

𝑡∗
   in Eq.  (8.4). 

Example 8.2 

Calculate the shear stress distribution in the walls of the three- cell wing section shown in Fig. 

8.4 when it is subjected to an anticlockwise torque of 11.3 kN.m. 
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Fig. 8.4 

Since the wing section is loaded by a pure torque the presence of the booms has no effect on 

the analysis. 

Choosing GREF =27600 N/mm2  

 

Similarly: 

 

 

Similarly  
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Solving Eqs.  (i) – (iv) simultaneously gives 

 

The shear stress in any wall is obtained by dividing the shear flow by the actual wall thickness. 

Hence the shear distribution is as shown in Fig. 8.6. 

 

Fig. 8.6 

8.3 Shear 

Consider the general case of an N-cell wing section comprising booms and skin panels, the 

latter being capable of resisting both direct and shear stresses. The wing section is subjected to 

shear loads Sx and Sy whose line of action do not necessarily pass through the shear center S. 

the resulting shear flow distribution is therefore due to the combined effects of shear and 

torsion. The method for determining the shear flow distribution and the rate of twist is based 

on a simple extension of the analysis of a single cell beam subjected to shear loads. The 

complete distribution of shear flow around the cell is given by the summation of the open 

section shear flow qb and the value of shear flow at the cut,  

The open section shear flow qb in the section is given by qs,o,R,  it could be suppose qs,o,R as a 

constant shear flow acting around the cell. 
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(8.8) 

 

The unknowns shear flows at each of the cuts qs,o,I , qs,o,II , …., qs,o,N plus the unknown rate of 

twist dθ/dz which, from the assumption of an undistorted cross-section, is the same for each 

cell. 

The rate of twist is: 

                                                  (8.9) 

 

 

 

Fig. 8.7 

By comparison with pure torsion case:  

            (8.10) 

qb has previously been determined. There are N Eqs. , so that a further equation is required to 

solve for the N+1 unknowns.  This obtained by considering the moment equilibrium of Rth 

cell. 
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The moment Mq,R produced by the total shear flow about any convenient moment center O is 

given by : 

                                                                                                (8.11) 

Substituting for qR in terms of the open section shear flow qb and the redundant shear flow qs,o,R 

:  

 

                                                                            (8.12) 

The sum of the moments from the individual cells is equivalent to the moment of the 

externally applied loads about the same point: 

                           (8.13) 

If the moment center is chosen to coincide with the point of intersection of the lines of action 

of external forces: 

                                                                   (8.14) 

Example   8.3 

The wing section of previous example carries a vertically upward shear load of 86.8 kN in the 

plane of the web 572. The section has been idealized such that the booms resist all the direct 

stresses while the walls are effective only in shear. If the shear modulus of all walls is 27 600 

N/mm2 except for the wall 78 for which it is three times this value, calculate the shear flow 

distribution in the section and the rate of twist.  

Boom areas: B1 = B6 =2580 mm2      B2 = B5 =3880 mm2    B3 = B4 3230 mm2 
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Fig. 8.8 

Choosing GREF as 27600 N/mm2 then 

 

 

Also  

 

 

Cut the top skin panels in each cell and calculate the open section shear flows  

The section is singly symmetric about the x-axis. 
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The values of  δ and qb are now for each cell in turn 
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Fig. 8.9 

 

The fourth equation required for a solution is obtained by taking moments about the intersection 

of the x axis and the web 572. Thus  

 

 

Superimposing these shear flows on the qb distribution 
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8.4 Tapered wings 

               (8.15) 

Example 8.4 

A two-cell beam has singly symmetrical cross-sections 1.2 m apart and tapers symmetrically 

in the y direction about a longitudinal axis. The beam supports load which produce a shear 

force Sy=10 kN and a bending moment Mx= 1.65 kN m at the larger cross-section; the shear 

load is applied in the plane of the internal spar web. If booms 1 and 6 lie in a plane which is 

parallel to the yz plane calculate the forces in the booms and the shear flow distribution in the 

walls at the larger cross-section. The booms are assumed to resist all the direct stresses while 

the walls are effective only in shear. The shear modulus is constant throughout, the vertical 

webs are all 1mm thick while the remaining walls are all 0.8 mm thick.  

Boom areas: B1=B3=B4=B6= 600mm2      B2=B5= 900mm2 

Sol/ 

At the larger cross-section 

 

Ixy =0 and My=0 , the direct stress 
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Fig. 8.10 

 

 

 

The value of Pz,r is calculated from equation (i) in column (2) of table below Px,r and Pyr were 

calculated as single cell respectively ( column 5 and 6) . the axial load Pr is given by (Px,r
2+ 

Pyr
2 + Pz,r

2) in column (7) and has the same sign as Pz,r . the moments of  Px,r and Pyr  columns 

(10) and (11), are calculated for a moment center at the mid-point of the internal web taking 

anticlockwise moments as positive. 
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From column (5) 

  

From column (6) 

 

 

From column (10) 

 

From column (11) 

 

 

Cx is axis of symmetry, Ixy =0 
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Cutting the top walls of each cell and using equation (ii) to evaluate qb distribution as shown 

in Fig. 8.11. 

 

 

 

Fig. 8.11 

Evaluating   δ for each wall, 

 

 

Taking moments about the mid-point of web 25 gives,  
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0= -690726 + 72000 qs,o,I + 144000 qs,o,II          (v) 

Solving Eqs (iii) –(v) gives  

 

The resulting shear flow distribution shown in   Fig. 8.12 

 

Fig. 8.12 
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Chapter Nine 

  Cut-Outs in Wings 

 
Principles: Wings, as well as fuselages, have openings in their surfaces to 

accommodate under carriages, engine nacelles and weapons installations, etc. 

In addition, inspection panel are required at specific positions so that, as for 

fuselages, the loads in adjacent portions of the wing structure are modified. 

Fig. 9.1 shows an opening in the bay 2 wing structure. 

 
 
 
 
 
 

 
 
 

 
 

Fig. 9.1 Three-bay wing structure with cut-out. 
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Initially, consider the case of a wing subjected to a pure torque in which one 

bay of the wing has the skin on its undersurface removed. This will be 

illustrated by the following the numerical example. 

 
 
Example 9.1 

The structural portion of a wing consists of a three-bay rectangular section 

box which may be assumed to be firmly attached at all points around its 

periphery to the aircraft fuselage at its inboard end. The skin on the 

undersurface of the central bay has been removed and the wing is subjected 

to a torque of 10 kN.m at its tip (Fig. 9.1). 

 Calculate:  

1. The shear flows in the skin panels ant the shear flows in the spar webs. 

2.  The loads in the corner flanges the forces in the ribs on each side of the 

cut-out 

Assuming that the spar flanges carry all the direct loads while the skin panels 

and spar webs are effective only in shear. 

 

Solution: 

1. If the wing structure were continuous and the effects of restrained 

warping at the built-in end ignored, the shear flows in the skin panels 

would be given by the Bredit Batho Theorem, i.e. 

 

 
and the flanges would be unloaded. However, the removal of the lower skin 

panel in bay ② results in a torsionally weak channel section for the length of 

bay ② which must in any case still transmit the applied torque to bay ① and 

subsequently to the wing support points.  

Although open section beams are inherently weak in torsion, the channel 

section in this case is attached at its inboard and outboard ends to torsionally 

stiff closed boxes so that, in effect, it is built-in at both ends The effect of axial 

constraint will be examined on open section beams subjected to torsion.  An 

alternative approach is to assume that the torque is transmitted 
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Fig. 9.2:  Differential bending of front spar. 

 

across bay ② by the differential bending of the front and rear spars. The 

bending moment in each spar is resisted by the flange loads P as shown, for 

the front spar, in Fig. 9.2(a). The shear loads in the front and rear spars form 

a couple at any station in bay ② which is equivalent to the applied torque. 

Thus, from Fig. 9.2(b) 

 

 
The shear flow q1 in Fig. 9.2(a) is given by 

 

 

 
Midway between stations 1500 and 3000 a point of contraflexure occurs in 

the front and rear spars so that at this point the bending moment is zero. Hence 
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Alternatively, P may be found by considering the equilibrium of either of the 

spar flanges. Thus 

 

 
 

The flange loads P are reacted by loads in the flanges of bays ① and ③. 

These flange loads are transmitted to the adjacent spar webs and skin panels 

as shown 

 
Fig. 9.3 Loads on bay ③ of the wing. 

 

 

in Fig. 9.3 for bay ③ and modify the shear flow distribution given by Bredit 

Batho Theorem. For equilibrium of flange 1 
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The resultant of the shear flows q2 and q3 must be equivalent to the applied 

torque. Hence, for moments about the centre of symmetry at any section in 

bay ③ as follows 

 

 
 

Solving   Eqs (i) and (ii) we obtain 

 

 
Comparison with the results of Bredit Batho Theorem show that the shear 

flows are increased by a factor of 1.5 in the upper and lower skin panels and 

decreased by a factor of 0.5 in the spar webs. 

2. The flange loads are in equilibrium with the resultants of the shear 

flows in the adjacent skin panels and spar webs. Thus, for example, in 

the top flange of the front spar 

 

 

xi701
Typewriter
134



 

 
 

 
Fig. 9.4 Distribution of load in the top flange of the front spar of the wing. 

 

 
Fig. 9.5 Shear flows (N/mm) on wing rib at station 3000 in the wing. 

 

Comments: The loads along the remainder of the flange follow from 

antisymmetry giving the distribution shown in Fig. 9.4. The load distribution 

in the bottom flange of the rear spar will be identical to that shown in Fig. 9.4 

while the distributions in the bottom flange of the front spar and the top flange 

of the rear spar will be reversed. We note that the flange loads are zero at the 

built-in end of the wing (station 0). Generally, however, additional stresses 

are induced by the warping restraint at the built-in end. The loads on the wing 

ribs on either the inboard or outboard end of the cut-out are found by 

considering the shear flows in the skin panels and spar webs immediately 

inboard and outboard of the rib. Thus, for the rib at station 3000 we obtain the 

shear flow distribution shown in Fig. 9.5. 

 
In this Example, we implicitly assumed in the analysis that the local effects 

of the cut-out were completely dissipated within the length of the adjoining 

bays which were equal in length to the cut-out bay. The validity of this 

assumption relies on St. Venant’s principle. It may generally be assumed 

therefore that the effects of a cutout are restricted to spanwise lengths of the 

wing equal to the length of the cut-out on both inboard and outboard ends of 
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the cut-out bay. We shall now consider the more complex case of a wing 

having a cut-out and subjected to shear loads which produce both bending and 

torsion. Again the method is illustrated by a numerical example. 

 

Example 9.2 

A wing box has the skin panel on its undersurface removed between stations 

2000 and 3000 and carries lift and drag loads which are constant between 

stations 1000 and 4000 as shown in Fig. 9.6(a). Determine: 

1.  The shear flows in the skin panels and spar webs. 

2.  The loads in the wing ribs at the inboard and outboard ends of the cut-

out bay. 

 

 
 

Fig. 9.6: Wing box of Example 9.1. 

 

Assume that all bending moments are resisted by the spar flanges while the 

skin panels and spar webs are effective only in shear.  

The simplest approach is first to determine the shear flows in the skin panels 

and spar webs as though the wing box were continuous and then to apply an 

equal and opposite shear flow to that calculated around the edges of the cut-

out. The shear flows in the wing box without the cut-out will be the same in 

each bay and are calculated using the standard procedure of calculating the 

shear low. This gives the shear flow distribution shown in Fig. 9.7. 

1. Now consider bay ② and apply a shear flow of 75.9 N/mm in the wall 

34 in the opposite sense to that shown in Fig. 9.7. This reduces the shear 

flow in the wall 34 to zero and, in effect, restores the cut-out to bay ②. 
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The shear flows in the remaining walls of the cut-out bay will no longer 

be equivalent to the externally applied shear loads so that corrections 

are required.  

Consider the cut-out bay (Fig. 9.8) with the shear flow of 75.9 N/mm applied 

in the opposite sense to that shown in Fig. 9.7. 

 The correction shear flows  

 
may be found using statics. Thus, resolving forces horizontally we have 

 

 
Fig. 9.7: Shear flow (N/mm) distribution at any station in the wing  without 

cut-out. 
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Fig. 9.8 Correction shear flows in the cut-out bay of the wing box of 

Example 23.7. 

 

 

Resolving forces vertically 
 

 
and taking moments about O in Fig. 9.6(b) we obtain 

 
 

Solving Eqs (i) and (ii) gives 

 
The final shear flows in bay ② are found by superimposing   

      
on the shear flows in Fig. 9.7, giving the distribution shown in Fig. 9.9. 

Alternatively, these shear flows could have been found directly by 

considering the equilibrium of the cut-out bay under the action of the applied 

shear loads. 
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The correction shear flows in bay ② (Fig. 9.8) will also modify the shear flow 

distributions in bays ① and ③. The correction shear flows to be applied to 

those shown in Fig. 9.7 for bay ③ (those in bay ① will be identical) may be 

found by determining the flange loads corresponding to the correction shear 

flows in bay ②. It can be seen from the magnitudes and directions of these 

correction shear flows (Fig. 9.8) that at any section in bay ② the loads in the 

upper and lower flanges of the front spar are equal in magnitude but opposite 

in direction. Similarly, for the rear spar.  

Thus, the correction shear flows in bay ② produce an identical system of 

flange loads to that shown in Fig. 9.2 for the cut-out bays in the wing structure 

of example 9.1 are as follows, 

 

 
 

 
 

Fig. 9.9 Final shear flows (N/mm) in the cut-out bay of the wing box  

 

xi701
Typewriter
139



 

 
 

 
 

Fig. 9.10 Correction shear flows in bay③of the wing box. 

 

It follows that these correction shear flows produce differential bending of the 

front and rear spars in bay ② and that the spar bending moments and hence 

the flange loads are zero at the mid-bay points. Therefore, at station 3000 the 

flange loads are 

 

 
These flange loads produce correction shear flows 

 

 
in the skin panels and spar webs of bay ③ as shown in Fig. 9.10. Thus for 

equilibrium of flange 1 
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Fig. 9.11 Final shear flows in bay③(and bay①) of the wing box  

 

 
 

Fig. 9.12 Shear flows (N/mm) applied to the wing rib at station 3000 in the 

wing box.  
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Simultaneous solution of Eqs (iii)–(vi) gives 

 

 
 

Superimposing these correction shear flows on those shown in Fig. 9.7 gives 

the final shear flow distribution in bay ③ as shown in Fig. 9.1. The rib loads 

at stations 2000 and 3000 are found as before by adding algebraically the shear 

flows in the skin panels and spar webs on each side of the rib. Thus, at station 

3000 we obtain the shear flows acting around the periphery of the rib as shown 

in Fig. 9.12.  The shear flows applied to the rib at the inboard end of the cut-

out bay will be equal in magnitude but opposite in direction. 

 

Note that in this example only the shear loads on the wing box between 

stations 1000 and 4000 are given. We cannot therefore determine the final 

values of the loads in the spar flanges since we do not know the values of the 

bending moments at these positions caused by loads acting on other parts of 

the wing. 
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Chapter Ten: Fuselage Frames and Wing Ribs 

 
 

1. Principles of stiffener/web construction 

 

Aircrafts are constructed primarily from thin metal skins which are 
capable of resisting in-plane tension and shear loads but they are weak 
in resisting buckling loads such as in the in-plane compressive loading. 
The skins are therefore stiffened by longitudinal stringers which resist 
the in-plane compressive loads and, at the same time, resist small 
distributed loads normal to the plane of the skin.  
The fuselages structure is stiffened by transverse frames or bulkheads. 
 The case of wings, they are stiffened by ribs. In addition, the frames 
and ribs resist concentrated loads in transverse 
Thus, cantilever wings may be bolted to fuselage frames at the spar 
caps while undercarriage loads are transmitted to the wing through 
spar and rib attachment points. 
 
Frames and ribs are themselves fabricated from thin sheets of metal 
and therefore require stiffening members to distribute the concentrated 
loads to the thin webs.  
If the load is applied in the plane of a web, the stiffeners must be 
aligned with the direction of the load. Alternatively, if this is not 
possible, the load should be applied at the intersection of two stiffeners 
so that each stiffener resists the component of load in its direction. The 
basic principles of stiffener/web construction are illustrated in Example 
10.1 
 
Example 10.1 

A cantilever beam (Fig. 10.1) carries concentrated loads as shown. 
Calculate the distribution of stiffener loads and the shear flow 
distribution in the web panels assuming that the latter are effective only 
in shear. We note that stiffeners HKD and JK are required at the point 
of application of the 4000N load to resist its vertical and horizontal 
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components. A further transverse stiffener GJC is positioned at the 
unloaded end J of the stiffener JK since stress concentrations are 
produced if a stiffener ends in the centre of a web panel. We note also 
that the web panels are only effective in shear so that the shear flow is 
constant throughout a particular web panel; the assumed directions of 
the shear flows are shown in Fig. 10.1. 
 

 
 
Fig. 10.1 Cantilever beam of Example 10.1. 
 

To examine the physical role of the different structural components in 

supporting the applied loads. Generally, stiffeners are assumed to withstand 

axial forces only so that the horizontal component of the load at K is 

equilibrated locally by the axial load in the stiffener JK and not by the bending 

of stiffener HKD. By the same argument the vertical component of the load 

at K is resisted by the axial load in the stiffener HKD. These axial stiffener 

loads are equilibrated in turn by the resultants of the shear flows q1 and q2 in 

the web panels CDKJ and JKHG. Thus we see that the web panels resist the 

shear component of the externally applied load and at the same time transmit 

the bending and axial load of the externally applied load to the beam flanges; 

subsequently, the flange loads are reacted at the support points A and E. 

Consider the free body diagrams of the stiffeners JK and HKD shown in Figs. 

10.2(a) 
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and (b). 

From the equilibrium of stiffener JK we have 
 

 
 

Fig. 10.2 Free body diagrams of stiffeners JK and HKD in the beam of 

Example 10.1. 

 

 
Fig. 10.3 Equilibrium of stiffener CJG in the beam of Example 10.1. 

 

and from the equilibrium of stiffener HKD 
 

 
Solving Eqs (i) and (ii) we obtain 
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The vertical shear force in the panel BCGF is equilibrated by the vertical 

resultant of the shear flow q3. Thus 

 

 

 
 

The shear flow q4 in the panel ABFE may be found using either of the above 

methods. Thus, considering the vertical shear force in the panel 

 

 
 

 

Alternatively, from the equilibrium of stiffener BF 
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Fig. 10.4 Load distributions in flanges of the beam of Example 10.1. 

 

 
 

The flange and stiffener load distributions are calculated in the same way and 

are obtained from the algebraic summation of the shear flows along their 

lengths. For example, the axial load PA at A in the flange ABCD is given by 
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The complete load distribution in each flange is shown in Fig. 10.4. The 
stiffener load distributions are calculated in the same way and are 
shown in Fig. 10.5. The distribution of flange load in the bays ABFE 
and BCGF could have been obtained by considering the bending and 
axial loads on the beam at any section.  
 
 
 

 
Fig. 10.5 Load distributions in stiffeners of the beam of Example 10.1. 
 

For example, at the section AE we can replace the actual loading system by a bending 
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and an axial load acting midway between the flanges (irrespective of 
whether or not the flange areas are symmetrical about this point) of 
 

P = 3464.1N 

 

 
 

This approach cannot be used in the bay CDHG except at the section 
CJG since the axial load in the stiffener JK introduces an additional 
unknown. The above analysis assumes that the web panels in beams 
of the type shown in Fig. 10.1 resist pure shear along their boundaries. 
The thin webs may buckle under the action of such shear loads 
producing tension field stresses which, 
in turn, induce additional loads in the stiffeners and flanges of beams. 
The tension field stresses may be calculated separately by the 
methods described previously superimposed on the stresses 
determined as described above. So far we have been concerned with 
web/stiffener arrangements in which the loads have been applied in 
the plane of the web so that two stiffeners are sufficient to resist the 
components of a concentrated load. Frequently, loads have an out-of-
plane component in which case the structure should be arranged so 
that two webs meet at the point of load application with stiffeners 
aligned with the three component directions (Fig. 10.6). In some 
situations, it is not practicable to have two webs meeting at the point of 
load application so that a component normal to a web exists. If this 
component is small it may be resisted in bending by an in-plane 
stiffener, otherwise an additional member must be provided spanning 
between adjacent frames or ribs, as shown in Fig. 10.7. In general, no 
normal loads should be applied to an unsupported web no matter how 
small their magnitude. 
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Fig. 10.6 Structural arrangement for an out of plane load. 

 

 
Fig. 10.7 Support of load having a component normal to a web. 

 

2. Fuselage frames 

The fuselage frames transfer loads to the fuselage shell and provide column 

support for the longitudinal stringers. The frames generally take the form of 

open rings so that the interior of the fuselage is not obstructed. They are 
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connected continuously around their peripheries to the fuselage shell and are 

not necessarily circular in form but will usually be symmetrical about a 

vertical axis. A fuselage frame is in equilibrium under the action of any 

external loads and the reaction shear flows from the fuselage shell. Suppose 

that a fuselage frame has a vertical axis of symmetry and carries a vertical 

external load W, as shown in Fig. 10.8(a) and (b). The fuselage shell/stringer 

section has been idealized such that the fuselage skin is effective only in shear. 

Suppose also that the shear force in the fuselage immediately to the left of the 

frame is Sy,1 and that the shear force in the fuselage immediately to the right 

of the frame is Sy,2; clearly, Sy,2 =Sy,1 −W. Sy,1 and Sy,2 generate shear flow 

distributions q1 and q2, respectively in the fuselage skin, each given by the 

following Eq. (A): 

 
(A) 

 

in which Sx,1 =Sx,2 =0 and Ixy =0 (Cy is an axis of symmetry). The shear flow 

qf transmitted to the periphery of the frame is equal to the algebraic sum of q1 

and q2, i.e. 

 

 

qf = q1 – q2 

 

 

Fig. 10.8 Loads on a fuselage frame. 
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Thus, substituting for q1 and q2 obtained from Eq. (A) and noting that Sy,2 = 

Sy,1 −W, we have 

 

 
in which qs,o is calculated using Eq. (17.17) where the shear load is W and 

 

 
Having determined the shear flow distribution around the periphery of 
the frame, the frame itself may be analysed for distributions of bending 
moment, shear force and normal force, as described in previous 
chapters. 
 

3. Wing ribs 

Wing ribs perform similar functions to those performed by fuselage frames. 

They maintain the shape of the wing section, assist in transmitting external 

loads to the wing skin and reduce the column length of the stringers. Their 

geometry, however, is usually different in that they are frequently of 

unsymmetrical shape and possess webs which are continuous except for 

lightness holes and openings for control runs. Wing ribs are subjected to 

loading systems which are similar to those applied to fuselage frames. 

External loads applied in the plane of the rib produce a change in shear force 

in the wing across the rib; this induces reaction shear flows around its 

periphery.  
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Fig. 10.9 Wing rib of Example 10.2. 

 

To illustrate the method of rib analysis we shall use the example of a three-

flange wing section in which the shear flow distribution is statically 

determinate. 

Example 10.2 

Calculate the shear flows in the web panels and the axial loads in the flanges 

of the wing rib shown in Fig. 10.9. Assume that the web of the rib is effective 

only in shear while the resistance of the wing to bending moments is provided 

entirely by the three flanges 1, 2 and 3. Since the wing bending moments are 

resisted entirely by the flanges 1, 2 and 3, the shear flows developed in the 

wing skin are constant between the flanges. Using the 

For a three-flange wing section we have, resolving forces horizontally 

 

 
Consider now the nose portion of the rib shown in Fig. 10.10 and suppose 

that the shear flow in the web immediately to the left of the stiffener 24 is q1. 

The total vertical shear force Sy,1 at this section is given by 
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Sy,1 = 7.0 × 300 = 2100N 

 
The horizontal components of the rib flange loads resist the bending 
moment at this section. Thus 
 

 

 
Fig. 10.10 Equilibrium of nose portion of the rib. 

 

The corresponding vertical components are then 

 

Py,2 = Py,4 = 2333.3 tan 15◦ = 625.2N 

 

Thus the shear force carried by the web is 2100−2×625.2 = 849.6 N. Hence 

 

xi701
Typewriter
178



 

 
 

 
The axial loads in the rib flanges at this section are given by 
 

The rib flange loads and web panel shear flows, at a vertical section 

immediately to the left of the intermediate web stiffener 56, are found by 

considering the free body diagram shown in Fig. 10.11. At this section, the rib 

flanges have zero slope so that the flange loads P5 and P6 are obtained directly 

from the value of bending moment at this section. Thus 

 

 
The shear force at this section is resisted solely by the web. Hence 
 

 
Fig. 10.11 Equilibrium of rib forward of intermediate stiffener 56. 
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Fig. 10.12 Equilibrium of stiffener 56. 

 

 
Fig. 10.13 Equilibrium of the rib forward of stiffener 31. 

 

so that 

 

q2 = 6.4 N/mm 

 

The shear flow in the rib immediately to the right of stiffener 56 is found 
most simply by considering the vertical equilibrium of stiffener 56 as 
shown in Fig. 10.12. Thus 

320 q3 = 6.4 × 320 + 15 000 

which gives 

q3 = 53.3N/mm 
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Finally, we shall consider the rib flange loads and the web shear flow at a 

section immediately forward of stiffener 31. From Fig. 10.13, in which 
we take moments about the point 3 
 

 
The horizontal components of the flange loads at this section are then 
 

 
and the vertical components are 
 

 
 

The total shear force at this section is 15 000+300×7.0=17 100 N. Therefore, 

the shear force resisted by the web is 17 100−2×3626.2=9847.6N so that the 

shear flow q3 in the web at this section is 
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Chapter Eleven  

Aircraft in Fatigue Structural Elements 
12. General 

 In this respect, we consider the factors affecting the life of an aircraft 

including safe life and fail safe structures, designing against fatigue, the 

fatigue strength of components, the prediction of aircraft fatigue life and crack 

propagation.  

Fatigue is defined as the progressive deterioration of the strength of a material 

or structural component during service such that failure can occur at much 

lower stress levels than the ultimate stress level. Fatigue is a dynamic 

phenomenon which initiates small (micro) cracks in the material or 

component and causes them to grow into large (macro) cracks; these, if not 

detected, can result in catastrophic failure. Fatigue damage can be produced 

in a variety of ways.  

1. Cyclic fatigue is caused by repeated fluctuating loads.  

2. Corrosion fatigue is accelerated by surface corrosion of the material 

penetrating inwards so that the material strength deteriorates.  

3. Small scale rubbing movements and abrasion of adjacent parts cause 

fretting fatigue,  

4. while thermal fatigue is produced by stress fluctuations induced by 

thermal expansions and contractions; the latter does not include the 

effect on material strength of heat.  

5. Finally, high frequency stress fluctuations, due to vibrations excited by 

jet or propeller noise, cause sonic or acoustic fatigue. 

Clearly an aircraft’s structure must be designed so that fatigue does not 

become a problem. For aircraft in general, the requirements that the strength 

of an aircraft throughout its operational life shall be such as to ensure that the 

possibility of a disastrous fatigue failure shall be extremely remote (i.e. the 

probability of failure is less than 10-7) under the action of the repeated loads 

of variable magnitude expected in service 

 

 

12.2 Designing against fatigue 

Various precautions may be taken to ensure that an aircraft has an adequate 

fatigue life. The following observations should be taken into considerations: 
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1. The early aluminium–zinc alloys possessed high ultimate and proof 

stresses but were susceptible to early failure under fatigue loading; 

choice of materials is therefore important. The naturally aged 

aluminium–copper alloys possess good fatigue resistance but with 

lower static strengths.  

2. Modern research is concentrating on alloys which combine high 

strength with high fatigue resistance. 

3.  Stress concentrations can arise at sharp corners and abrupt changes in 

section. Fillets should therefore be provided at re-entrant corners, and 

cut-outs, such as windows and access panels, should be reinforced.  

4. In machined panels the material thickness should be increased around 

bolt holes, while holes in primary bolted joints should be reamered to 

improve surface finish; surface scratches and machine marks are 

sources of fatigue crack initiation.  

5. The fatigue load spectrum begins when the aircraft taxis to its take-off 

position. During taxiing the aircraft may be manoeuvring over uneven 

ground with a full payload so that wing stresses, for example, are 

greater than in the static case. Also, during take-off and climb and 

descent and landing the aircraft is subjected to the greatest load 

fluctuations. 

6. The undercarriage is retracted and lowered; flaps are raised and 

lowered; there is the impact on landing; the aircraft has to carry out 

manoeuvres. 

7.  Finally, the aircraft, experiences a greater number of gusts than during 

the cruise. The loads corresponding to these various phases must be 

calculated before the associated stresses can be obtained. For example, 

during take-off, wing bending stresses and shear stresses due to shear 

and torsion are based on the total weight of the aircraft including full 

fuel tanks, and maximum payload all factored by 1.2 to allow for a 

bump during each take-off on a hard runway or by 1.5 for a take-off 

from grass. 

8. The use of radar enables aircraft to avoid cumulus where guests are 

prevalent, but has little effect at low altitude in the climb and descent 

where clouds cannot be avoided. The ESDU (Engineering Sciences 

Data Unit) has produced gust data based on information collected by 

gust recorders carried by aircraft. Graphical forms are available in a 

form l10 versus h curves, h is altitude).  

9. The average distance flown at various altitudes for a gust having a 

velocity greater than ±3.05 m/s to be encountered. In addition, gust 

xi701
Typewriter
144



 

 
 

frequency curves give the number of gusts of a given velocity per 1000 

gusts of velocity ±3.05 m/s. 

Example:  

The Airbus is required to have a life free from fatigue cracks of 24 000 

flights or 30 000 hours, while its economic repair life is 48 000 flights or 

60 000 hours; its landing gear, however, is designed for a safe life of 32 

000 flights, after which it must be replaced.  

 

12.3 Fatigue strength of components 

As the stress level is decreased the number of cycles to failure increases, 

resulting in a fatigue endurance curve (the S–N curve) of the type shown in 

Fig. 12.1. Such a curve corresponds to the average value of N at each stress 

amplitude since there will be a wide range of values of N for the given stress; 

even under carefully controlled conditions the ratio of maximum N to 

minimum N may be as high as 10: 1. Two other curves may therefore be 

drawn, as shown in Fig. 12.1, enveloping all or nearly all the experimental 

results; these curves are known as the confidence limits. If 99.9 per cent of all 

the results lie between the curves, i.e. only 1 in 1000 falls outside, they 

represent the 99.9 per cent confidence limits. If 99.99999 per cent of results 

lie between the curves only 1 in 107 results will fall outside them and they 

represent the 99.99999 per cent confidence limits. The results from tests on a 

number of specimens may be represented as a histogram in which the number 

of specimens failing within certain ranges R of N is plotted against N. Then if 

NaV is the average value of N at a given stress amplitude the probability of 

failure occurring at N cycles is given by 
 

(12.1) 
in which σ is the standard deviation of the whole population of N values. The 

derivation of Eq. (12.1) depends on the histogram approaching the profile of 

a continuous function close to the normal distribution, which it does as the 

interval NaV/R becomes smaller and the number of tests increases. The 

cumulative probability. 
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Fig. 12.1: S-N diagram 

 

The probability that a particular specimen will fail at or below N cycles, is 

defined as 

 

 

 

(12.2) 

 

The following points are to be noted: 

1. The probability that a specimen will endure more than N cycles is then 

1 – P(N). The normal distribution allows negative values of N, which is 

clearly impossible in a fatigue testing situation.  

2. Other distributions, extreme value distributions, are more realistic and 

allow the existence of minimum fatigue endurances and fatigue limits.  

3. The damaging portion of a fluctuating load cycle occurs when the stress 

is tensile; this causes cracks to open and grow.  

4. Conversely, if the steady stress is compressive the maximum tensile 

stress will decrease and the number of cycles to failure will increase.  

5. An approximate method of assessing the effect of a steady mean value 

of stress is provided by a Goodman diagram, as shown in Fig. 12.2. 

This shows the cyclic stress amplitudes which can be superimposed 

upon different mean stress levels to give a constant fatigue life. 

 In Fig. 12.2, Sa is the allowable stress amplitude,  

Sa,0 is the stress amplitude required to produce fatigue failure at N cycles with 

zero mean stress,  
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Sm is the mean stress and Su the ultimate tensile stress.  

If Sm =Su any cyclic stress will cause failure, while if Sm =0 the allowable stress 

amplitude is Sa,0.  

The equation of the straight line portion of the diagram is 
 

(12.3) 

Experimental evidence suggests a non-linear relationship for 
particular materials. Equation (12.3) then becomes 
 

(12.4) 

 
 

Fig. 12.2: Goodman diagram 

 

In practical situations, fatigue is not caused by a large number of identical 

stress cycles but by many different stress amplitude cycles. The prediction of 

the number of cycles to failure therefore becomes complex. Miner and 
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Palmgren have proposed a linear cumulative damage law as follows. If N 

cycles of stress amplitude Sa cause fatigue failure, then 1 cycle produces 1/N 

of the total damage to cause failure. Therefore, if r different cycles are applied 

in which a stress amplitude Sj ( j =1, 2, . . . , r) would cause failure in Nj cycles 

the number of cycles nj required to cause total fatigue failure 

is given by 
 

 
(12.5) 

Although S–N curves may be readily obtained for different materials by 

testing a large number of small specimens (coupon tests), it is not practicable 

to adopt the same approach for aircraft components since these are expensive 

to manufacture and the test program too expensive to run for long periods of 

time. Stresses were measured at points where fatigue was expected (and 

actually occurred) and S–N curves plotted for the complete structure. The 

curves had the usual appearance and at low stress levels had such large 

endurances that fatigue did not occur; thus a fatigue limit existed. It was found 

that the average S–N curve could be approximated to by the equation 
 

(12.6) 

in which the mean stress was 90 N/mm2. In general terms, Eq. (12.6) 
may be written as 
 

                            (12.7) 

in which S∞ is the fatigue limit and C is a constant. Thus Sa→S∞ as N→∞. 

Equation (12.7) may be rearranged to give the endurance directly, i.e. 
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                    (12.8) 

which shows clearly that as Sa→S∞, N→∞. 

It has been found experimentally that N is inversely proportional to the mean 

stress as the latter varies in the region of 90 N/mm2 while C is virtually 

constant. This suggests a method of determining a ‘standard’ endurance curve 

(corresponding to a mean stress level of 90 N/mm2) from tests carried out on 

a few specimens at other mean stress levels. Suppose Sm is the mean stress 

level, not 90 N/mm2, in tests carried out on a few specimens at an alternating 

stress level Sa,m where failure occurs at a mean number of cycles Nm. Then 

assuming that the S–N curve has the same form as Eq. (12.7) 
 

 
(12.9) 

in which C =1000 and S∞,m is the fatigue limit stress corresponding to the 

mean stress Sm. Rearranging Eq. (12.9) we have 

                    (12.10) 

 The number of cycles to failure at a mean stress of 90 N/mm2 would have 

been, from the above 
 

 
(12.11) 

The corresponding fatigue limit stress would then have been, from a 
comparison with Eq. (12.10) 
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(12.12) 

The standard endurance curve for the component at a mean stress of 
90 N/mm2 is from Eq. (12.7) 

                                  (12.13) 

Substituting in Eq. (12.13) for S∞,m from Eq. (12.12) we have 
 

   
(12.14)  

in which N” is given by Eq. (12.11).  

Equation (12.14) will be based on a few test results so that a ‘safe’ fatigue 

strength is usually taken to be three standard deviations below the mean 

fatigue strength. Hence we introduce a scatter factor Kn (>1) to allow for this; 

Eq. (12.14) then becomes 
 

       (12.15) 

Kn varies with the number of test results available and for a coefficient of 

variation of 0.1, Kn =1.45 for 6 specimens, Kn =1.445 for 10 specimens, K 

=1.44 for 20 specimens and for 100 specimens or more Kn =1.43. For typical 

S–N curves a scatter factor of 1.43 is equivalent to a life factor of 3 to 4. 

 

12.4 Prediction of aircraft fatigue life 

We have seen that an aircraft suffers fatigue damage during all phases of the 

ground–air– ground cycle. The various contributions to this damage may be 

calculated separately and hence the safe life of the aircraft in terms of the 
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number of flights calculated. In the ground–air–ground cycle the maximum 

vertical acceleration during take-off is 1.2 g for a take-off from a runway or 

1.5 g for a take-off from grass.  

It is assumed that these accelerations occur at zero lift and therefore produce 

compressive (negative) stresses, −STO, in critical components such as the 

undersurface of wings. The maximum positive stress for the same component 

occurs in level flight (at 1 g) and is +S1g. The ground–air–ground cycle 

produces, on the undersurface of the wing, a fluctuating stress SGAG = (S1g 

+STO)/2 about a mean stress SGAG(mean) = (S1g –STO)/2. Suppose that tests 

show that for this stress cycle and mean stress, failure occurs after NG cycles. 

For a life factor of 3 the safe life is NG/3 so that the damage done during one 

cycle is 3/NG. This damage is multiplied by a factor of 1.5 to allow for the 

variability of loading between different aircraft of the same type so that the 

damage per flight DGAG from the ground–air–ground cycle is given by: 
 

                                               (12.16) 
Fatigue damage is also caused by gusts encountered in flight, particularly 

during the climb and descent. Suppose that a gust of velocity ue causes a stress 

Su about a mean stress corresponding to level flight, and suppose also that the 

number of stress cycles of this magnitude required to cause failure is N(Su); 

the damage caused by one cycle is then 1/N(Su).  

From the Palmgren–Miner hypothesis, when sufficient gusts of this and all 

other magnitudes together with the effects of all other load cycles produce 

acumulative damage of 1.0, fatigue failure will occur.  

The ESDU data sheets [ Reference: ESDU Data Sheets, Fatigue, No. 80036] 

present the data in two forms.  

1. First, l10 against altitude curves show the distance which must be flown 

at a given altitude in order that a gust (positive or negative) having a 

velocity ≥3.05 m/s be encountered. It follows that 1/l10 is the number 

of gusts encountered in unit distance (1 km) at a particular height.  

2. Secondly, gust frequency distribution curves, r(ue) against ue, give the 

number of gusts of velocity ue for every 1000 gusts of velocity 3.05 

m/s. From these two curves the gust exceedance E(ue) is obtained; E(ue) 

is the number of times a gust of a given magnitude (ue) will be equaled 

or exceeded in 1 km of flight.  

Thus, from the above 
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                                                (12.17) 

in which l10 is dependent on height. A good approximation for the curve of 

r(ue) against ue in the region ue =3.05 m/s is: 

                          (12.18) 
Consider the typical gust exceedance curve shown in Fig. 12.3. In 1 km of 

flight there are likely to be E(ue) gusts exceeding ue m/s and E(ue)−δE(ue) 

gusts exceeding 
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Fig. 12.3: Gust exceedance curve 

Ue +δue m/s. Thus, there will be δE(ue) fewer gusts exceeding ue +δue m/s than 

ue m/s and the increment in gust speed δue corresponds to a number −δE(ue) 

of gusts at a gust speed close to ue. Half of these gusts will be positive 

(upgusts) and half negative (downgusts) so that if it is assumed that each 

upgust is followed by a downgust of equal magnitude the number of complete 

gust cycles will be −δE(ue)/2.  

Suppose that each cycle produces a stress S(ue) and that the number of these 

cycles required to produce failure is N(Su,e). The damage caused by one cycle 

is then 1/N(Su,e) and over the gust velocity interval δue the total damage δD is 

given by 
 

 
(12.19) 

Integrating Eq. (12.19) over the whole range of gusts likely to be encountered, 

we obtain the total damage Dg per km of flight.  
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       (12.20) 

 

Further, if the average block length journey of an aircraft is RaV, the average 

gust damage per flight is DgRaV. Also, some aircraft in a fleet will experience 

more gusts than others since the distribution of gusts is random. Therefore, if, 

for example, it is found that one particular aircraft encounters 50 per cent more 

gusts than the average its gust fatigue damage is 1.5Dg/km. 

The gust damage predicted by Eq. (12.20) is obtained by integrating over a 

complete gust velocity range from zero to infinity. Clearly there will be a gust 

velocity below which no fatigue damage will occur since the cyclic stress 

produced will be below the fatigue limit stress of the particular component. 

Equation (12.20) is therefore rewritten 

 

 
(12.21) 

 

in which uf is the gust velocity required to produce the fatigue limit stress.We 

have noted previously that more gusts are encountered during climb and 

descent than during cruise. Altitude therefore affects the amount of fatigue 

damage caused by gusts and its effects may be determined as follows. 

Substituting for the gust exceedance E(ue) in Eq. (12.21) from Eq. (12.17) we 

obtain 
 

 
(12.22) 
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Suppose that the aircraft is climbing at a speed V with a rate of climb (ROC). 

The time taken for the aircraft to climb from a height h to a height h+δh is 

δh/ROC during which time it travels a distance Vδh/ROC. Hence, from Eq. 

(12 

.22) the fatigue damage experienced by the aircraft in climbing through a 

height δh is 

 

                        (12.23) 

 
 

From the above 90000 dh/l10 =320.4, from which it can be seen that 

approximately 95 per cent of the total damage in the climb occurs in the first 

3000 m.  

An additional factor influencing the amount of gust damage is forward speed. 

For example, the change in wing stress produced by a gust may be represented 

by 
 

                                                                (12.24) 

in which the forward speed of the aircraft is in equivalent airspeed (EAS). 

From Eq. (12.24) we see that the gust velocity uf required to produce the 

fatigue limit stress S∞ is 
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                                                           (12.25) 

The gust damage per km at different forward speeds Ve is then found using 

Eq. (12.21) with the appropriate value of uf as the lower limit of integration. 

The integral may be evaluated by using the known approximate forms of 

N(Su,e) and E(ue) from Eqs (12.15) and (12.17). From Eq. (12.15) 

 

 
 

 
From which from Equ. (12.17), we have, 

 
 
 

 

or, substituting for r(ue) from Eq. (12.18) 

 
Equation (12.21) then becomes: 
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                                                                                                             (12.26) 

It can be seen from Eq. (12.26) that gust damage increases in proportion to 

Ve5.26 so that increasing forward speed has a dramatic effect on gust damage.  

 

The total fatigue damage suffered by an aircraft per flight is the sum of the 

damage caused by the ground–air–ground cycle, the damage produced by 

gusts and the damage due to other causes such as pilot induced manoeuvres, 

ground turning and braking, and landing and take-off load fluctuations.  

The damage produced by these other causes can be determined from load 

exceedance data. Thus, if this extra damage per flight is Dextra the total 

fractional fatigue damage per flight is 
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(12.27) 

 
(12.28) 

12.5 Crack propagation 

We have seen that the concept of fail-safe structures in aircraft construction 

relies on a damaged structure being able to retain sufficient of its load-carrying 

capacity to prevent catastrophic failure, at least until the damage is detected. 

It is therefore essential that the designer be able to predict how and at what 

rate a fatigue crack will grow. The ESDU data sheets provide a useful 

introduction to the study of crack propagation; some of the results are 

presented here. The analysis of stresses closes to a crack tip using elastic stress 

concentration factors breaks down since the assumption that the crack 
tip radius approaches zero results in the stress concentration factor 
tending to infinity. Instead, linear elastic fracture mechanics analyses 
the stress field around the crack tip and identifies features of the field 
common to all cracked elastic bodies. 
 

12.5.1 Stress concentration factor 

There are three basic modes of crack growth, as shown in Fig. 12.4. Generally, 

the stress field in the region of the crack tip is described by a two-dimensional 

model which may be used as an approximation for many practical three-

dimensional loading cases. Thus, the stress system at a distance r (r ≤a) from 

the tip of a crack of length 2a, shown in Fig. 12.5, can be expressed in the 

form 
 

                               (12.29) 
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[ Knott, J. F., Fundamentals of Fracture Mechanics, Butterworths, London, 

1973.] 

 

in which f (θ) is a different function for each of the three stresses and K is the 

stress intensity factor; K is a function of the nature and magnitude of the 

applied stress levels and also of the crack size. The terms (2πr) 1 2 and f (θ) 

map the stress field in the 
 

 
Fig. 12.4: Basic modes of crack growth 

 

 

 
Fig. 12.5: Stress Field in the vicinity of a crack 

vicinity of the crack and are the same for all cracks under external loads that 

cause crack openings of the same type. Equation (12.29) applies to all modes 

of crack opening, with K having different values depending on the geometry 
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of the structure, the nature of the applied loads and the type of 

crack.Experimental data show that crack growth and residual strength data are 

better correlated using K than any other parameter. K may be expressed as a 

function of the nominal applied stress S and the crack length in the form: 
 

                                     (12.30) 

 

in which α is a non-dimensional coefficient usually expressed as the ratio of 

crack length to any convenient local dimension in the plane of the component; 

for a crack in an infinite plate under an applied uniform stress level S remote 

from the crack, α=1.0. 

Alternatively, in cases where opposing loads P are applied at points close to 

the plane of the crack 
 

                                                      (12.31) 
 

in which P is the load/unit thickness. Equations (12.30) and (12.31) may be 

rewritten as 

                                                            (12.32) 
where K0 is a reference value of the stress intensity factor which depends 

upon the loading. For the simple case of a remotely loaded plate in tension 

                                                               (12.33) 

and Eqs (12.32) and (12.30) are identical so that for a given ratio of crack 

length to plate width α is the same in both formulations. In more complex 

cases, for example the in-plane bending of a plate of width 2b and having a 

central crack of length 2a 
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                                                 (12.34) 
in which M is the bending moment per unit thickness. Comparing Eqs (12.34) 

and (12.30), we see that S =3Ma/4b3 which is the value of direct stress given 

by basic bending theory at a point a distance ± a/2 from the central axis. 

However, if S was specified as the bending stress in the outer fibres of the 

plate, i.e. at ±b, then S =3M/2b2. 

clearly the different specifications of S require different values of α. On the 

other hand, the final value of K must be independent of the form of 

presentation used. Use of Eqs (12.30)–(12.32) depends on the form of the 

solution for K0  and care must be taken to ensure that the formula used and the 

way in which the nominal stress is defined are compatible with those used in 

the derivation of α.  

There are a number of methods available for determining the value of K and 

α. In one method the solution for a component subjected to more than one type 

of loading is obtained from available standard solutions using superposition 

or, if the geometry is not covered, two or more standard solutions may be 

compounded.  

The coefficient α in Eq. (12.30) has different values depending on the plate 

and crack geometries. Listed below are values of α for some of the more 

common cases. 

(i) A semi-infinite plate having an edge crack of length a; α=1.12. 

(ii) An infinite plate having an embedded circular crack or a semi-circular 

surface crack, each of radius a, lying in a plane normal to the applied stress; 

α=0.64. 

(iii) An infinite plate having an embedded elliptical crack of axes 2a and 2b 

or a semielliptical crack of width 2b in which the depth a is less than half the 

plate thickness each lying in a plane normal to the applied stress; α=1.12 ɸ in 

which ɸ varies with the ratio a/b as follows: 
 

 
(iv) A plate of finite width w having a central crack of length 2a where 

a≤0.3w; α=[ sec (aπ/w)]1/2. 
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(v) For a plate of finite width w having two symmetrical edge cracks each of 

depth 2a, Eq. (12.30) becomes 
 

 
 

From Eq. (12.29) it can be seen that the stress intensity at a point ahead of a 

crack can be expressed in terms of the parameter K. Failure will then occur 

when K reaches a critical value Kc. This is known as the fracture toughness of 

the material and has units MN/m3/2 or N/mm3/2. 
 

12.5.2 Crack tip plasticity 

In certain circumstances it may be necessary to account for the effect of plastic 

flow in the vicinity of the crack tip. This may be allowed for by estimating the 

size of the plastic zone and adding this to the actual crack length to form an 

effective crack length 2a1. Thus, if rp is the radius of the plastic zone, a1 =a+rp 

and Eq. (12.30) becomes 

                                                (12.35) 

in which Kp is the stress intensity factor corrected for plasticity and α1 

corresponds to a1. Thus for rp/t >0.5, i.e. a condition of plane stress 

                               
(12.36) 

in which fy is the yield proof stress of the material. For rp/t <0.02, a 

condition of plane strain 

 
                                                                                                               (12.37) 
For intermediate conditions the correction should be such as to produce a 

conservative solution. Dugdale[ D. S., J. Mech. Phys. Solids, 8, 1960.] showed 
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that the fracture toughness parameter Kc is highly dependent on plate 

thickness. In general, since the toughness of a material decreases with 

decreasing plasticity, it follows that the true fracture toughness is that 

corresponding to a plane strain condition. This lower limiting value is 

particularly important to consider in high strength alloys since these are prone 

to brittle failure. In addition, the assumption that the plastic zone is circular is 

not representative in plane strain conditions. Rice 

and Johnson  [Rice, J. R. and Johnson, M. A., Inelastic Behaviour of Solids, 

McGraw Hill, NewYork, 1970] showed that, for a small amount of plane 

strain yielding, the plastic zone extends as two lobes (Fig. 12.6) each inclined 

at an angle θ to the axis of the crack where θ =70◦ and the greatest extent L 

and forward penetration (ry for θ =0) of plasticity are given by 

 

 
12.5.3 Crack propagation rates 

Having obtained values of the stress intensity factor and the coefficient α, 

fatigue crack propagation rates may be estimated. From these, the life of a 

structure containing cracks or crack-like defects may be determined; 
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alternatively, the loading condition may be modified or inspection periods 

arranged so that the crack will be detected before failure. Under constant 

amplitude loading the rate of crack propagation may be represented 

graphically by curves described in general terms by the law[ Paris, P. C. and 

Erdogan, F., A critical analysis of crack propagation laws, [Trans. Am. Soc. 

Mech.Engrs., 85, Series D, No. 4, December 1963.] 

 

 
(12.38) 

in which ∆K is the stress intensity factor range and R=Smin/Smax. If Eq. (12.30) 

is used 
 

                        (12.39) 

Equation (12.39) may be corrected for plasticity under cyclic loading 
and becomes 
 

                  (12.40) 

in which a1 =a+rp, where, for plane stress 

 

                                                  
[Rice, J. R., Mechanics of crack tip deformation and extension by fatigue. In: 

Fatigue Crack]                                                                                     

The curves represented by Eq. (12.38) may be divided into three regions. The 

first corresponds to a very slow crack growth rate (<10-8 m/cycle) where the 

curves approach a threshold value of stress intensity factor ∆Kth corresponding 

xi701
Typewriter
164



 

 
 

to 4×10-11 m/cycle, i.e. no crack growth. In the second region (10-8– 10-6 

m/cycle) much of the crack life takes place and, for small ranges of ∆K, Eq. 

(12.38) may be represented by 

           
[Paris, P. C., The fracture mechanics approach to fatigue. In: Fatigue – An 

Interdisciplinary ]                                                                                  (12.41) 

in which C and n depend on the material properties; over small ranges of 

da/dN and ∆K, C and n remain approximately constant. The third region 

corresponds to crack growth rates >10-6 m/cycle, where instability and final 

failure occur. An attempt has been made to describe the complete set of curves 

by the relationship 

           
[Forman, R. G., Numerical analysis of crack propagation in cyclic-loaded 

structures, Trans. Am.]                                                                         (12.42) 

in which Kc is the fracture toughness of the material obtained from toughness 

tests. Integration of Eqs (12.41) or (12.42) analytically or graphically gives an 

estimate of the crack growth life of the structure, i.e. the number of cycles 

required for a crack to grow from an initial size to an unacceptable length, or 

the crack growth rate or failure, whichever is the design criterion. Thus, for 

example, integration of Eq. (12.41) gives, for an infinite width plate for which 

α=1.0 
 

 
                                                                                                               (12.43) 
for n>2. An analytical integration may only be carried out if n is an integer 

and α is in the form of a polynomial, otherwise graphical or numerical 

techniques must be employed. Substituting the limits in Eq. (12.43) and taking 

Ni =0, the number of cycles to failure is given by 
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                                                                                                              (12.44) 
An infinite plate contains a crack having an initial length of 0.2 mm and is 

subjected to a cyclic repeated stress range of 175 N/mm2. If the fracture 

toughness of the plate is 1708 N/mm3/2 and the rate of crack growth is 40×10-

15 (∆K )4 mm/cycle determine the number of cycles to failure. 

The crack length at failure is given by Eq. (12.30) in which α=1, K =1708 

N/mm3/2 and S =175 N/mm2, i.e. 
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