Ministry of High Education and Scientifics Research
 Al-Farahidi University College of Technical Engineering

AC Electrical Circuits

A. AC Circuit Elements

For students of 1nd Stage

By:

Lec. Dr. Hiba M. Isam

AC Circuit Elements

> Electric current (I): is the rate of movement of charge through a conductor.

$$
I=\frac{Q}{t}
$$

$I:$ is the current in amperes
\boldsymbol{t} : the time in seconds during which the current flows
\boldsymbol{Q} : the quantity of electrical charge in coulombs
potential difference (p.d.) or voltage (V): For a continuous current to flow between two points in a circuit a potential difference (p.d.) or voltage, \boldsymbol{V}, is required between them.

Volt (v): is the unit of voltage.

Resistance (R): The flow of electric current is subject to friction. This friction, or opposition, is the property of a conductor that limits current.

Ohm ($\mathbf{\Omega}$): is the unit of resistance.

Conductance (G): is the reciprocal of resistance. measured in Mho or siemens (S).

$$
G=\frac{1}{R}
$$

Power (\mathbf{P}): is defined as the rate of doing work or transferring energy.
Watt (\boldsymbol{W}): is the unit of power.

Multiples and submultiples of units:
SI units may be made larger or smaller by using prefixes which denote multiplication or division by a particular amount. The eight most common multiples and submultiples, with their meaning, are listed below:

Prefix	Name	Meaning
T	tera	multiply by $1000000000000\left(\right.$ i.e. $\left.\times 10^{12}\right)$
G	gega	multiply by $1000000000\left(\right.$ i.e. $\left.\times 10^{9}\right)$
M	mega	multiply by $1000000\left(\right.$ i.e. $\left.\times 10^{6}\right)$
k	kilo	multiply by $1000\left(\right.$ i.e. $\left.\times 10^{3}\right)$
m	milli	divide by $1000\left(\right.$ i.e. $\left.\times 10^{-3}\right)$
μ	micro	divide by $1000000\left(\right.$ i.e. $\left.\times 10^{-6}\right)$
N	nano	divide by $1000000000\left(\right.$ i.e. $\left.\times 10^{-9}\right)$
P	pico	divide by $1000000000000\left(\right.$ i.e. $\left.\times 10^{-12}\right)$

Sources

Ideal voltage and current sources can be further described as either independent sources or dependent sources.

- Independent source: in which the value of the voltage or current supplied is specified by the value of the independent source alone.
- Independent voltage source: An ideal voltage source is independent of the current through it. If a copper wire were connected across its ends the current through it would be infinite. The symbol for an ideal voltage source is shown in Figure.1.
- An ideal current source is independent of the voltage across it and if its two ends are not connected to an external circuit the potential difference across it would be infinite. The symbol for a current generator is shown in Figure 1.

Figure. 1

- Dependent source (or controlled source): in which the value of the voltage or current cannot be specified unless we know the value of the voltage or current on which it depends in the circuit.
- Dependent voltage source: The symbol for a dependent voltage source is shown in Figure2
- Dependent current source: The symbol for a dependent current source is shown in Figure 2.

Figure. 2

1- Ohms law

1.1 Ohms law:

Ohm's law states that the current (I) flowing in a circuit is directly proportional to the applied voltage (V) and inversely proportional to the resistance R, provided the temperature remains constant.

Example (1): The current flowing through a resistor is 0.8 A when a p.d. of 20 V is applied. Determine the value of the resistance.

Solution:

resistance $R=\frac{V}{I}=\frac{20}{0.8}=\frac{200}{8}=\mathbf{2 5 \Omega}$

Example2: Determine the p.d. which must be applied to a $2 \mathrm{k} \Omega$ resistor in order that a current of 10 mA may flow.

Solution:

Resistance $R=2 k \Omega=2 \times 10^{3}=2000 \Omega$
Current $\mathrm{I}=10 \mathrm{~mA}=10 \times 10^{-3} \mathrm{~A}$
$V=I R=(0.01)(2000)=20 \mathrm{~V}$

Example 3: A coil has a current of 50 mA flowing through it when the applied voltage is 12 V . What is the resistance of the coil?

Solution:

Resistance, $R=\frac{V}{I}=\frac{12}{50 \times 10^{-3}}$

$$
=\frac{12 \times 10^{3}}{50}=\frac{12000}{50}=240 \Omega
$$

Al-Farahidi University
Collage of Technical Engineering Department of Communications Technical Engineering

Homework: A 100 V battery is connected across a resistor and causes a current of 5 mA to flow. Determine the resistance of the resistor. If the voltage is now reduced to 25 V , what will be the new value of the current flowing?

Solution:

1.2 Electrical power:

Power (\boldsymbol{P}): in an electrical circuit is given by the product of potential difference V and current I.

Watt (W): is the unit of power.

$$
\mathrm{P}=\mathrm{V} * \mathrm{I}(\mathrm{Watt})
$$

Note: From Ohm's law, $V=I R$.

$$
P=\frac{V^{2}}{R}
$$

Voltage, Current \& Power- Relationship

Example 4: A 100 W electric light bulb is connected to a 250 V supply. Determine:
(a) the current flowing in the bulb
(b) the resistance of the bulb.

Solution:

Power $P=V \times I$, from which, current $I=\frac{P}{V}$
(a) Current $I=\frac{100}{250}=\frac{10}{25}=\frac{2}{5}=0.4 \mathrm{~A}$
(b) Resistance $R=\frac{V}{I}=\frac{250}{0.4}=\frac{2500}{4}=625 \Omega$

Example 5 : Calculate the power dissipated when a current of 4 mA flows through a resistance of $5 \mathrm{k} \Omega$.

Solution:

Power $P=I^{2} R=\left(4 \times 10^{-3}\right)^{2}\left(5 \times 10^{3}\right)$

$$
=16 \times 10^{-6} \times 5 \times 10^{3}
$$

$$
=80 \times 10^{-3}
$$

$$
=0.08 \mathrm{~W} \text { or } 80 \mathrm{~mW}
$$

Alternatively, since $I=4 \times 10^{-3}$ and $R=5 \times 10^{3}$ then
from Ohm's law, voltage

$$
V=I R=4 \times 10^{-3} \times 5 \times 10^{3}=20 \mathrm{~V}
$$

Hence,
power $P=V \times I=20 \times 4 \times 10^{-3}$
$=80 \mathrm{~mW}$

Example 6: A current of 5A flows in the winding of an electric motor, the resistance of the winding being 100Ω Determine:
(a) the p.d. across the winding
(b) the power dissipated by the coil.

Solution:

(a) Potential difference across winding,

$$
V=I R=5 \times 100=\mathbf{5 0 0} \mathrm{V}
$$

(b) Power dissipated by coil,

$$
\begin{aligned}
P & =I^{2} R=5^{2} \times 100 \\
& =2500 \mathrm{~W} \text { or } 2.5 \mathrm{~kW}
\end{aligned}
$$

(Alternatively, $P=V \times I=500 \times 5$
$=2500 \mathrm{~W}$ or 2.5 kW)

1.3 Electrical energy:

Energy = Power x Time

- If the power is measured in watts and the time in seconds, then the unit of energy is watt-seconds or joules.
- If the power is measured in kilowatts and the time in hours, then the unit of energy is kilowatt-hours.

Example 7: A 12 V battery is connected across a load having a resistance of 40Ω, Determine the current flowing in the load, the power consumed, and the energy dissipated in 2 minutes.

Solution:

Current $I=\frac{V}{R}=\frac{12}{40}=0.3 \mathrm{~A}$
Power consumed, $P=V I=(12)(0.3)=3.6 \mathbf{W}$.
Energy dissipated $=$ power \times time

$$
\begin{aligned}
& =(3.6 \mathrm{~W})(2 \times 60 \mathrm{~s}) \\
& =432 \mathrm{~J}(\text { since } 1 \mathrm{~J}=1 \mathrm{Ws})
\end{aligned}
$$

Al-Farahidi University
Collage of Technical Engineering Department of Communications Technical Engineering

Homework: Electrical equipment in an office takes a current of 13A from a 240 V supply. Estimate the cost per week of electricity if the equipment is used for 30 hours each week and 1 kWh of energy costs 12.5 dinar.

1.4 Resistance and resistivity

The resistance of an electrical conductor depends on four factors, these being:

- the length of the conductor (l)
- the cross-sectional area of the conductor (a)
- the type of material
- the temperature of the material.

$$
R=\frac{\rho L}{A}
$$

$$
\rho=\text { resistivity }
$$

$$
\begin{aligned}
& L=\text { length } \\
& A=\text { cross sect }
\end{aligned}
$$

$A=$ cross sectional area

Example 8: Calculate the resistance of a 2 km length of aluminum overhead power cable if the cross-sectional area of the cable is $100 \mathrm{~mm}^{2}$. Take the resistivity of aluminum to $0.03 \times 10-6 \Omega$.m.

Solution:

Length $l=2 \mathrm{~km}=2000 \mathrm{~m}$, area $a=100 \mathrm{~mm}^{2}=100 \times 10^{-6} \mathrm{~m}^{2}$ and resistivity $\rho=0.03 \times 10^{-6} \Omega \mathrm{~m}$.

```
1 مليمتر مربع = 1.0\times10-6 6-1 متر مربع
```

$$
\begin{aligned}
\text { Resistance } R & =\frac{\rho l}{a} \\
& =\frac{\left(0.03 \times 10^{-6} \Omega \mathrm{~m}\right)(2000 \mathrm{~m})}{\left(100 \times 10^{-6} \mathrm{~m}^{2}\right)} \\
& =\frac{0.03 \times 2000}{100} \Omega=\mathbf{0 . 6} \boldsymbol{\Omega}
\end{aligned}
$$

Example 9: Calculate the cross-sectional area, in mm^{2}, of a piece of copper wire, 40 m in length and having a resistance of 0.25Ω. Take the resistivity of copper as $0.02 \times 10-6 \Omega$.m.

Solution:

Resistance $R=\rho l / a$ hence cross-sectional area

$$
\begin{aligned}
a=\frac{\rho l}{R} & =\frac{\left(0.02 \times 10^{-6} \Omega \mathrm{~m}\right)(40 \mathrm{~m})}{0.25 \Omega} \\
& =3.2 \times 10^{-6} \mathrm{~m}^{2} \\
& =\left(3.2 \times 10^{-6}\right) \times 10^{6} \mathrm{~mm}^{2}=3.2 \mathrm{~mm}^{2}
\end{aligned}
$$

Homework: The resistance of 1.5 km of wire of cross-sectional area $0.17 \mathrm{~mm}^{2}$ is 150Ω. Determine the resistivity of the wire.

Solution:

