


Definition
Aerodynamics is the science that study of objects in motion through the air and the
forces that produce or change such motion.




Flow around cylinder

Flow around aero foil




Navier-Stokes Equations
-An important equation which give us mathematical description for the fluid flow (

internal or external flow )
-fundamental partial differentials equations that describe the flow of fluids.

Using the rate of stress and rate of strain




The Navier-Stokes Equations

2-Momentum Equation:

Newton’s second law of motion: the resultant of force applied to particle which may be at rest or
in motion is equal to rate of change of momentum of the particle in the direction of the resultant
force
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When the momentum equation is applied to an infinitesimal control volume (c.v.),
it can be written in the form:

Rate of increase of momentum within the C.V. + Net rate at which momentum leaves the C.V.=

= Body force + pressure force + viscous force
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+* The second law is based on the conservation of
momentum
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—=zﬁ (Eq 1)

We express the total force as the sum of body forces and surface forces
- — — .
Y2 F =XYFpoay t XFsurface - Thus (Eq 1) can be written as

DV
D_ z Fbody + Z Fsurface (Eq 2)

Body forces: Gravity force, Electromagnetic forse, Centrifugal force

Surface forces: Pressure forces, Viscous forces

We cosider the x-component of (Eq 2).



Sincem = pdxdydz and V = (u, v,w) we have

Du o -
pdxdydz - E = Z Fx,body + Z Fx,surface (Eq 3)
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y- component:
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Lecture 2

Solutions of Viscous-Flow Equations
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The equations of viscous flow derived in Lecture 1 are a system of nonlinear partial
differential equations. No general analytical method yet exists for attacking this
system for an arbitrary viscous-flow problem.

Over past 150 years, a considerable number of exact but particular solutions have
been found which satisfy the complete equations for some special geometry, many
of which are very illuminating about viscous flow phenomena.

Almost all the known particular solutions are for the case of incompressible
Newtonian flow with constant transport properties.
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Basically, there are two types of exact solutions of the momentum equation:

1. Linear solutions, where the convective term V-V vanishes

2. Nonlinear solutions, where V-V exist

It is also possible to classify solutions by the type or geometry of
flow involved: , .
v 1. Couette (wall-driven) steady flows L ___77 /J

\ 2. Poisedille (pressure-driven) steady duct flows
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v 3. Unsteady duct flows
4. Unsteady flows with moving boundaries

5. Duct flows with suction or injection



Couette flow

v'In fluid dynamics, Couette flow is the laminar flow of a viscous fluid in the space
between two parallel plates, one of which is moving relative to the other.

v'The flow is driven by virtue of viscous drag force acting on the fluid
and the applied pressure gradient parallel to the plates.

v'This kind of flow has application in hydro-static lubrication, viscosity
pumps and turbine.



Navier-Stokes Equation:
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Analytical solution oF Couette flow

We choose x to be the direction along which all fluid particles travel, and assume the plates are infinitely
large in z-direction, so the z-dependence is not there.
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* The governing equationis:
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The velocity profile in non-dimensional form
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The veloci’ty proﬁles fov various P

* For P < o, the fluid motion created by the
top plate is not strong enough to
overcome the adverse pressure gradient,
hence backflow (i.e., u/U is negative)
occurs at the lower-half region.

 For P>o, the fluid motion created by top
plate is enough strong to overcome the
adverse pressure gradient, hence u/U is
+ve over the whole gap.
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Maximum and minimum velocity and it’s location

« For maximum velocity =0
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* It is interesting to note that maximum velocity for P=1 occurs at y/h

=1 and equals to U. For P>1, the maximum velocity occurs at a
location y/h<1.

This means that with P>1, the fluid particles attain a velocity higher than
that of the moving plate at a location somewhere below the moving plate.

* For P=-1 the minimum velocity occurs, at y/h=0. For P<-1, the minimum

velocity occurs at allocation y/h>1, means occurrence of back flow near the
fixed plate.

2
The Max. velocity : u,,,, = U(:)P)
2

The Min. velocity : u ,; = U(14J;P)
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Volume ﬂow rate and average Ve[oci’cy

* Thevolume flow rate per unit width is:

o= [uar=of eriOplo |l

* The Average velocity:

volume flow rate (Q)

u —_
av9  area per unit width (hx1))
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Shear stress distribution

* By invoking Newton'’s law of viscosity:

g G rE )

* In thedimensionless form, the shear stress distribution becomes

ht 2y\

* Shear stressvaries linearly with the distance from the boundary.
* For P=0, Shear stress remains constant across the flow passage: T =”UT

« At y=h/2, i.e., at the center of the flow passage, shear stress is
independent of pressure gradient (P).



MCQ:

3. For fluid flows obeying conservation of mass, what is the value of k if v=4x+ky denotes the velocity at any pointin the flow?
) -4
)4
)-2
d) 2

o, O W

A View Answer

Answer: a
3;: =0. Comparing v=4x+ky with v=v,+v,, we get v,=4x and v,=ky.
Using the conservation of mass, we get 6%1:} + g;y) =0
4+k=0
K=-4.

4. The following equation represents the momentum equation for a fluid flow that is approximated by a two-dimensional model. What
does k Stand for?

Gor

it

a) Thermal conductwlty
b) Fluid viscosity
c) Density
d) Pressure

2 [k( %2 + 50)] + 2L g0

A View Answer

Answer: b

Explanation: By using constitutive relations the momentum equation is expressed as pf — D2k — Lk By 5]
fx=0, where vy, vy are the velocity components, P is the pressure, k is the viscosity, fy is the component of the body force vector, and p is
the density.



3-What is an assumption made while considering Couette flow?
a) Flow is unparallel
b) No slip condition between two plates
c) Flow is inviscid
d) Both the plates are stationary
View Answer
Answer: b
Explanation: In analyzing Coutte flow, we have two flat plates kept parallel to each other with viscous fluid contained
between the two. One major assumption made is that there is a no slip condition thus resulting in no relative motion
between the fluid and the plate.

8. What happens to the shear stress if the thickness between the two plates is increased in a Couette flow?
a) Increases

b) Decreases

¢) Remains same

d) Becomes infinite

A View Answer

Answer: b

Explanation: The relation between the shear stress and the viscous shear layer is given by:
t=p(5)

Where, u. is the velocity at y = D that is at the upper plate.

T is the shear stress

D is the thickness of the vicsous shear layer/distance between the two parallel plates

As peer the formula, then the thickness of the viscous shear layer increases, the shear stress decreases provided the other properties
remain the same.



Journal Bearing

Hydrodynamic Lubrication (Sliding Bearing)

Large forces are developed in small clearance when the surfaces are slightly inclined
and one is in motion so that fluid is wedged into the decreasing space. Usually the oils
employed for lubrication are highly viscous and the flow is of laminar nature.

Oil wedge provides
hydrodynamic lift
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P Forces acting on a volume ¢lement in the hydrodynamic film
o
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Assumptions:
The acceleration 1s zero.

The body force 1s small and can be neglected.
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The Naxs'ler—Stokes equatlon in the x-direction (eq. 1) reduces to:
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0 With these values inserted in eq.(**) we obtain the pressure distribution inside the bearing.
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4- Laminar flow between concentric rotating cylinders:

Consider the purely circulatory flow of a fluid contained between two long
concentric rotating cylinders of radius R; and R, at angular velocities ®; and w-.

(b) VELOCITY PROFILE



In this case the Navier-Stokes equations in cylindrical coordinates are used.
1- direction:
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Integration:

Sub. 1n eq.(1) yields:

Uy = RZ 1 R’ [(sz§ —a)lRf)r—@(a)z _‘{01)} """" (11)
2 — 1Yy r

The shear stress may be evaluated by the equation:

=57

By using eq.(11):
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5- Example:

1- Using the Navier-Stokes equation in the flow direction, calculate the power required to

pull (Im x 1m) flat plate at speed (1 m/s) over an inclined surface. The oil between the
surfaces has (p = 900 kg/m’ , p = 0.06 Pa.s).The pressure difference between points 1 and
2 is (100 kN/m?) .

Solution:




B.C (b=10 mm)

The Navier-Stokes equation in x- direction y=0 u=0 = B=0
ou ou ou ou op ’u O'u 0Ou y=h u==U = A =i_id_p+ﬁg
tUu—+v—tw— |=pg — =+ —+—+ : x
p{ar o oy a:} P o #{ﬁx‘ oy a;’f} b 2pdx 24
~2 2
We have: Acceleration=0 ,v=0 , w=0 , lm;;:o , I; .odu_ldp  p U_bdp pb
x 0= B dv_ﬁdxy ‘ug}.y b 2udx Zﬂgx
The equation reduces to: '
d’u _ ldp p g The shearing force on the moving plate:
dy> udx u°’ F =1, xarea
Integration du
du 1 dp P F=,u-d— X area
=y gyt Y lyes
yoH H area=1 m’
u:id_p 2_£gry2+Ay+B
Zﬂ dx 2# - F=_£+éd_p_g

b 2dx 2’Dg"

We have g =g-siné . %:ﬂ

3
Fe 0.06><1_0.01 100x10 —0'01><90{}><9.81><Sin30
0.01 2 1 2
F=-528N
Power=F .-U

Power =528x1=528W  (Ans)



1- Using the Navier-Stokes equations, determine the pressure gradient along flow, the
average velocity, and the discharge for an oil of viscosity 0.02 N.s/m’ flowing between
two stationary parallel plates 1 m wide maintained 10 mm apart. The velocity midway
between the plates is 2 m/s. [-3200 N/m” perm ; 1.33 m/s ; 0.0133 m’/s]

2- An incompressible, viscous fluid is placed between horizontal, infinite, parallel plates
as shown in figure. The two plates move in opposite directions with constant velocities U,
and U,. The pressure gradient in the x-direction is zero. Use the Navier-Stokes equations
to derive expression for the velocity distribution between the plates. Assume laminar flow.

[ =%(Ul +U2)_U:]

3- Two parallel plates are spaced 2 mm apart, and oil (n=0.1 N.s/m’ . S = 0.8) flows at a
rate of 24x10™ m*/s per m of width between the plates. What is the pressure gradient in the
direction of flow if the plates are inclined at 60° with the horizontal and if the flow is
downward between the plates? [-353.2 kPa/m]

4- Using the Navier-Stokes equations, find the velocity profile for fully developed flow of

water (i = 1.14x10” Pa.s) between parallel plates with the upper plate moving as shown in

figure. Assume the volume flow rate per unit depth for zero pressure gradient between the

plates is 3.75x107 m*/s. Determine:

a- the velocity of the moving plate.

b- the shear stress on the lower plate.

c- the pressure gradient that will give zero shear stress at y = 0.25b. (b= 2.5 mm)

d- the adverse pressure gradient that will give zero volume flow rate between the plates.
[3m/s:; 1.37 N/m? ; 2.19 kN/m’ per m ; -3.28 kN/m’ per m]

5- A vertical shaft passes through a bearing and is lubricated with an oil (i = 0.2 Pa.s) as
shown in figure. Estimate the torque required to overcome viscous resistance when the
shaft is turning at 80 rpm. (Hint: The flow between the shaft and bearing can be treated as
laminar flow between two flat plates with zero pressure gradient). [0.355 N.m]

6- Determine the force on the piston of the figure due to shear, and the leakage from the
pressure chamber for U = 0. [295.1 N ; 1.636x10° m’/s]



Moving
plate

plate

Problem No. 2 Problem No. 4
Shaft
75 mm 150 mm
L~ Bearing 0.15 MPa e
160 mm C 3 =1 poise 50 mm diam
Oil I'—O.25 mm 7 Radlg!ocsle:.‘ﬁnce

Problem No. 5 Problem No. 6






Definition
Aerodynamics is the science that study of objects in motion through the air and the
forces that produce or change such motion.




Flow around aero foil

Flow around cylinder




Navier-Stokes Equations
-An important equation which give us mathematical description for the fluid flow (

internal or external flow )
-fundamental partial differentials equations that describe the flow of fluids. Using the

rate of stress and rate of strain




The Navier-Stokes Equations

2-Momentum Equation:

Newton’s second law of motion: the resultant of force applied to particle which may be at rest or
in motion is equal to rate of change of momentum of the particle in the direction of the resultant
force
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When the momentum equation is applied to an infinitesimal control volume (c.v.),
it can be written in the form:

Rate of increase of momentum within the C.V. + Net rate at which momentum leaves the C.V.=

= Body force + pressure force + viscous force

P2 |

r ’ )




+* The second law is based on the conservation of
momentum
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=) F  (EqD)

We express the total force as the sum of body forces and surface forces
- — — .
2 F =XYFpoay t XFsurface - Thus (Eq 1) can be written as

DV
D_ z Fbody + z Fsurface (Eq 2)

Body forces: Gravity force, Electromagnetic forse, Centrifugal force

Surface forces: Pressure forces, Viscous forces

We cosider the x-component of (Eq 2).



Sincem = pdxdydz and V = (u, v, w) we have

Du o -
pdxdydz - E = Z Fx,body + Z Fx,surface (Eq 3)

X component:
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Momentum Equation:
For
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Introduction

The drag on a body passing through a fluid may be considered to be made up of
two components: Form drag and Skin friction drag.

Form drag: which is dependent on the pressure forces acting on the body; and
the skin friction drag , which depends on the shearing forces acting between
the body and the fluid.




Shear Force and Pressure Force

—

— Major losses in pipes

+» Shear forces: = =

—

- Viscous drag,?rictional drag, or skin friction

- caused by shear between the fluid and the
solid surface
- function of Surface area and Length of
object

f Flow expansion
+ Pressure forces = tosses

. pressure drag or form drag —L_
- caused by Flow separation from the body
- function of area normal to the flow Projected area



Description of Boundary Layer
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T,,- Wall shear stresses

In the immediate vicinity of the boundary surface, the velocity of the fluid
increases gradually from zero at boundary surface to the velocity of the
mainstream. This region is known as BOUNDARY LAYER.

ou)
0y )4

Large velocity gradient leading to appreciable shear stress: + _— U (

The nominal thickness of BOUNDARY LAYER is defined as the distance from
the boundary where the velocity of fluid is 99 % of free stream velocity



Description of Boundary Layer
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1,,- Wall shear stresses

Consists of two layers:
CLOSE TO BOUNDARY : large velocity gradient, appreciable viscous forces.
OUTSIDE BOUNDARY LAYER: viscous forces are negligible, flow may be
treated as non-viscous or inviscid.

Shear stress acting at the plate surface
shear stress: T = u ou sets up a shear force which opposes
oy the fluid motion, and fluid close to the

wall is decelerated.

Theoretical understanding on Boundary layer development is very important to
determine the velocity gradient and hence shear forces on the surface.



Development of
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—> | Transition | Turbulent boundary
— region layer
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Boundary layer thickness, 6 T

The boundary layer thickness increases as the distance x from leading edge is
increases. This is because of viscous forces that dissipate more and more
energy of fluid stream as the flow proceeds and large group of particles are slow
downed.

In laminar boundary layer the particles are moving along stream lines.

The disturbance in fluid flow in boundary layer is amplified and the flow become
unstable and the fluid flow undergoes transition from laminar to turbulent flow.
This regime is called transition regime.



Development of

Turbulent
layer

~— Overlap layer

— Buffer layer

%
—> Laminar boundary Transition | Turbulent boundary
— layer region layer
—
— %
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After going through transition zone of finite length the flow becomes

Boundary layer thickness, o

Viscous sublayer

completely

turbulent which is characterized by three dimensional, random motion of

fluctuation induced bulk motion parcel of fluid.

LAMINAR BOUNDARY LAYER PROFILE — PARABOLIC

TURBULENT BOUNDARY LAYER — PROFILE BECOMES LOGARITHMIC
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Development of

—> Laminar boundary Transition | Turbulent boundary
— layer region layer
%
|
r-’_ A
¥ = N < ) ) Turbulent
- - ) ) N J layer
S s s DR = ~— Overlap layer
. e 7 = . Do \//4 o —— Buffer layer
X / " Viscous sublayer
’ % | Boundary layer thickness, o
| |

BL depends on Reynold’'s number & also on the surface roughness. Roughness of
the surface adds to the disturbance in the flow & hastens the transition from
laminar to turbulent.

ou
oy

For laminar flow T = U

ou Where ¢ is the eddy viscosity and
For Turbulent flow 7 ( H T+ & ) oy is often much larger than p



Boundary Layer Thickness for Laminar

and Turbulent

%
—> Laminar boundary Transition | Turbulent boundary
— layer region layer
—
E— 1 A
- %
— — s N c g </ )/} Turbulent
— > = ) JJ \} \»x‘ " layer
- — e  \
— e — e -y v,(:‘ A ‘) e TN A > —— Overlap layer
>0 _ . 5 = 7 o Buffer layer
X / Viscous sublayer
’ X I Boundary layer thickness, 6
| |

The boundary layer thickness is governed by parameters like incoming velocity,
kinematic viscosity of fluid etc.

For laminar flow

_9.0x Pohlhausen _ 9.835X Blassius
Oam = Re_ (Exact solution) lam Re, (Approximate solution)
0.377x
S =

For Turbulent flow tur

Re%



Flow Patterns and Regimes within Laminar and
Turbulent Boundary Layer

As mentioned above, very close to the plane surface the flow remains laminar and
a linear velocity profile may be assumed.

In this region, the velocity gradient is governed by the fluid viscosity

(ﬂj_L
oy M

Free stream
velocity, U,
> | _______ Us Upper limit, boundary layer
.
‘\ T S,u=0.99U;
_» >
T Eddy formations
in boundary layer
.
—
—»
/ / 5
R — —_— — : ;
e Laminar (or viscous)
> O - sublayer



Flow Patterns and Regimes within Laminar and
Turbulent Boundary Layer

In turbulent flow, owing to the random motion of the fluid particles, eddy patterns are
set up in the boundary layer which sweep small masses of fluid up and down
through the boundary layer, moving in a direction perpendicular to the surface and

the mean flow direction.

Instantaneous
veloc_ity u n )
al point in Velocity fluctuations normal to mean Tee strcam
boundary layer ___ flow direction, v’ T U.
’ s
XA S N K /’/\7/ o, velocity floet U Upper limit, boundary layer
Q’ ’lf\’//r j\’.’%’}f V v fw ’:\Z;}\// ; parallel tosurfa ~___oa===T
! o Fu=0990,

Eddy formations Q
Velocity normal to surface i boyndacy layer
/ >
------- T Laminar (or viscous)

sublayer




Flow Patterns and Regimes within Laminar and
Turbulent Boundary Layer

Conversely, slow-moving fluid is lifted into the upper levels, slowing down the fluid
stream and, by doing so, effectively thickening the boundary layer, explaining the
more rapid growth of the turbulent boundary layer compared with the laminar one.

Owing to these eddies, fluid from the upper higher-velocity areas is forced into the
slower-moving stream above the laminar sublayer, having the effect of increasing
the local velocity here relative to its value in the laminar sublayer.

In order to explain this
Fioe fream process, the eddy viscosity, €

—

velocity, U, should be added in Shear

U . .
s U 1 , boundary lay .
ppe "L OMBYWE  stress formulation.

Eddy formations
in boundary layer

T o,u=0.99U;

z_:(ﬂ_i_g)au
l&' 6}2

Laminar (or viscous)
sublayer




Effect of Pressure Gradient on Boundary
Layer Development

The presence of a pressure gradient dp/ox effectively means a du/ox term, i.e. the
flow stream velocity changes across the surface.

for example, consider a curved surface, then the velocity variation can be
shown as:

g—; = (), velocity increasing

du : .
% < (), velocity decreasing

9p

g% < (), pressure decreasing ai = (), pressure increasing

Favourable pressure gradient =—#— Adverse pressure gradient

___________.—--"F"—-.__________*

_— T



Effect of Pressure Gradient on Boundary
Layer Development

If the pressure decreases in the
downstream direction, then the
boundary layer tends to be reduced in
thickness, and this case is termed a
favorable pressure gradient.

If the pressure increases in the
downstream  direction, then the
boundary layer thickens rapidly; this
case is referred to as an adverse
pressure gradient.

du

P 0, velocity increasing

53% < (), pressure decreasing

du - .
e < (), velocity decreasing

g—i = (), pressure increasing

Favourable pressure gradient <—#— Adverse pressure gradient

_________._.—--"F"

,-"'ff,

T

T



Cylinder in a Cross Flow

Conditions depend on special features of boundary layer development, including onset at a
stagnation point and separation, as well as transition to turbulence.

vV —>

Forward
stagnation point Separation point

Boundary layer

— Stagnation point: Location of zero velocity (u, =0) and maximum pressure.

— Followed by boundary layer development under a favorable pressure gradient
(dp/dx <0) and hence acceleration of the free stream flow (du,, /dx > 0).

— As the rear of the cylinder is approached, the pressure must begin to increase.
Hence, there is a minimum in the pressure distribution, p(x), after which boundary
layer development occurs under the influence of an adverse pressure gradient
(dp/dx >0, du,, /dx <0).



Cylinder in a Cross Flow

— Separation occurs when the velocity gradient du /dy ‘ y—o reduces tozero.

7 R~
g 0 - R
< \\Favorable pressure gradient [ Adverse pressure gradient . >

ap Lo
3}<0 m>0

Vortices

and is accompanied by flow reversal and a downstream wake.

— Location of separation depends on boundary layer transition.

Laminar Laminar Transition Turbulent
boundary @ -‘T/:; =, | boundary . _— boundary
layer ( - )\7 ~ layer N layer VD VD
P 4 /) - s *7’ ki, 'I’/‘ R — p —
— esep G — C/ | ) . eD = — —
\4 3 ==
y —> 3 ,/\\{ | Yy —> C\ y ILI 1%
P~ - — — . 2
Rep <2 x10° G Ren>2x 10° ——=
v I »
M~ S5 e —_— i
Separation —_ = Separation




flow separation point u

= a\A\

boundary

— layer

wall

Edge of the
i boundary layer

N
Sepration

stream line




Boundary Layer
History

% 1904 Prandtl
Fluid Motion with Very Small Friction
2-D boundary layer equations

% 1908 Blasius
The Boundary Layers in Fluids with Little Friction
Solution for laminar, 0-pressure gradient flow

% 1921 von Karman
Integral form of boundary layer equations






Flat Plate: Parallel to Flow
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Why is shear maximum at the leading edge of
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Graphical Representation
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1. Ideal Fluids

An ideal fluid is one which is incompressible, and has
zero viscosity.

Though no real fluid satisfies these criteria, there are
situations in which viscosity of gases and liquids, and
compressibility effects in gases, have little effect, and
the theory of the ideal fluid can give an accurate
prediction of the real flow.

For example, for a real fluid flowing past and around a
stationary object, ideal theory works well outside the
boundary layer.



2. Steady Two-Dimensional Flow

In this unit we shall consider only steady, two-
dimensional flow, in which:

- the fluid velocity at any point remains constant with
time;

* the direction and magnitude of the fluid velocity will
in general vary in the x- and y-directions, but not in
the z-direction.

3. Streamlines, Pathlines and Streaklines

A streamline is a line in the flow such that the velocity
of each particle on the line is tangential to the line.

A pathline is the path traced out by one particle of the
fluid.

A streakline joins all the particles which have passed a
particular fixed point in the flow.

For steady, ideal flow, all the above are the same, and
we need use only the term streamline.



Types of fluid Flow

1. Real and Ideal FIOW Laminar BL Turbulent BL Flow separation Turbulent
- 'f point (or separated) wake
‘ \
_If the fluid is considered frictionless with zero viscosity it is called o 0\
ideal. —_—
Xtr_lower —

In real fluids the viscosity is considered and shear stresses occur el
causing conversion of mechanical energy into thermal energy r\—.//

v

stagnation
\> low pressure
>
/; " —g o — 23

|deal Real

Friction =0 Friction z 0

|deal Flow ( u=0) Real Flow ( p#0)
Energy loss =0 Energy loss #0

high pressure




One , Two and three Dimensional Flow :(cont.)

| =

z e
—_——
—_—

— =

Two dimensional flow means that
the flow velocity is function

of two coordinates

V=Ff(XY orXZ orYZ)

One dimensional flow means that
the flow velocity is function of one
coordinate

V=f(XorY orzZ)

Three dimensional flow means that
the flow velocity is function
of there coordinates

V =(X,Y2)




1- Introduction

Velocity vector
g=ui +vj +wk

qg=u,r+u,0+wk

In Cartesian coordinates

In Polar coordinates
:j N

» The gradient operator V 1is given by:

d 0 0
¥Y¥=i—ti—rk—
X ay 0z
d ) 0
u—+v—+w—=V-V
0X ay 0z
Where q=V
Divergence of g=V-g
_ Ou Ov Ow
V.g=—+—+
ox Oy Oz

Continuity equation

V.G=0

Or

ou oOv oOw
+—+—=0

ox 0Oy Oz



Curlof §=Vxg

Vorticity equation

(0w ov). (du ow). (ov ou)- 2- Requ{rements for ideal- fluid flow
Vxg= vl e bt U a—gk |- non viscous.
B B i _ 2- incompressible.
Vxg=wi+o,j+ok 3-V.G=0
J1 4- Vxg=0
Lj‘—dj
/‘ -
W &.7; X

If Vvxg=0 the flow is called rotational
If Vvxg =0 the flow is called irrotational



- In mathematics

V = gradient (del or nabla operator)

In the three-dimensional Cartesian coordinate system. the aradient is given by:

= 0 =4 .= @

— — —+ —

V : ax+ J ay k 0z
V .= divergence

V . q = divergence of q (div q)

Vog —F =+ ceveeeeneneens (2) = Continuity equation



V X=-curl

V X q=curlof q

i = 0 = 0 — = = —
VXqg= l ]a_ —Zx[ul+v]+wk]
i 7 k
o 2 2
dx 0y 0z
u v w
then
— = fadw dv =L ow = adD ou s .
= —_— | + CER s iy e — \Vnrfie 2
VXqg=i ( 3y 62) ] ( = ax) + k ( = ay).. .............. 3) Vorticity equation
l J \ J k J
1 | | y
W O W,
For two-dimensional flow: y
w, =0 : wy, =0
— e ; : W
IfVXq #0 ateverypointina flow,the flow is called rotational. Z ©z

fVXq

=0

at every point in a flow, the flow is called irrotational.



1.2 Requirements for ideal-fluid flow

1. Non Viscous (n=0)

2. Incompressible (p=constant)

ap ap ap ap
at_o ’ ax_o ’ ay_o ’ 62_0

3. The Continuity Equation:

4 |rrotational Flow

Vxqg=0
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The Acceleration Field of a Fluid

du
a, = —
dt
dv

ay =
dw
a, = —
© o dt

_

;t—:

ot
Jv
ot
aw

ot

0 0 0 0
+u—u+v—u+w—u=—u+(V-V)u

0X ay 0z ot

ov ov Jv ov
+u—+v—+w—=—+4+ (V-V)

0x oy 07 ot

0 0 J d

ox ay 0z ot

* Summing these into a vector, we obtain the total

a e —
dt

av _av

ot

Local

4

aV aV aV

i Sm—, s o i Y s—

ox ay 0z
Convective

)

v
V-V
ot
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The Acceleration Field of a Fluid

* The term 0V/ot is called the local acceleration, which
vanishes if the flow is steady-that 1s, independent of time.

* The three terms in parentheses are called the convective
acceleration, which arises when the particle moves through
regions of spatially varying velocity, as in a nozzle or
diffuser.

» The gradient operator V is given by:

0 0 0
Y=j— 4+ J—%k—
0x ay 07

L rvliwlov.y

0X ay 07




Example 1. Acceleration field

Given the eulerian velocity vector field
V =34 + xzj + v’k
find the total acceleration of a particle.

Solution

» Assumptions: Given three known unsteady velocity components, u = 31, v = xz, and

w = 1y’

 Solution step 1: First work out the local acceleration 9V/r:

aV ou v ow d d )
—=i—+j—+k—=i—0C)+j—(x2) + k— @ = 3i + 0j + y’k
ot o A TR TGN itk ) i

Solution step 2: In a similar manner, the convective acceleration
terms, are

@




4 N

Solution step 2: In a similar manner, the convective acceleration
terms, are

oV 3
s = (31) —;(3ti + xzj + Y’k) = (30)(0i + zj + 0k) = 31z

v% - (xz) = (3II + xzj + y’k) = (x2)(0i + 0j + 20yk) = 2txyz k

\4
w ?’92 (tvz)——(3n + xzj + y’k) = 1y*)(0i + xj + 0k) = my? j
*» Solution step 3: Combine all four terms above into the single “total” or “‘substantial”

derivative:

dV aV oV aV oV
4t u—+v—+w— = Gi + vk) + 31zi + 200vzk + o3
dr ot ax "ay 9z ( yk) 9 4 yJ

=3i + Bz + myd)j + (* + 22k Ans.

* Comments: Assuming that V is valid everywhere as given, this total acceleration vector
dV/dt applies to all positions and times within the flow field.

& y
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Example 2. Acceleration field

* An idealized velocity field is given by the formula
V = 4mxi — 2t%yj + 4xzk
* Is this flow field steady or unsteady? Is it two- or three

dimensional? At the point (x, y, z) = (1, 1, 0), compute the
acceleration vector.

Solution

» The flow is unsteady because time ¢ appears explicitly in the
components.

» The flow is three-dimensional because all three velocity
components are nonzero.

» Evaluate, by differentiation, the acceleration vector at (x, vy, z)
=(—1, +1, 0).




/

Example 2. Acceleration field

du_du Ju Jdu Ju_ g2 _ 2
iy +u8x+v3y+wé’z =4x +4tx(4t) - 2t"y(0) + 4xz(0) = 4x + 16t°x

dv _ ov +u b + vﬂ + wﬁ = —4ty + 4tx(0)— 2t%y(-2t%) + 4xz(0) = -4ty + 4t’y

dt & ox dy oz

O W O I T =Dy ) = T b T2

dt oJt dx dy Jz

or: % = (4x + 16t*X)i + (—4ty + 4t*y) j+ (16txz + 16x*2)k

at (x, y, z) = (-1, +1, 0), we obtain %=—4(1+4t2)i—4t(l—t3)j+0k

o
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Exercise 1

» The velocity 1n a certain two-dimensional flow field 1s given
by the equation

V = 2xfi — 2y1]
where the velocity 1s in m/s when x, y, and ¢ are in meter and
seconds, respectively.

|. Determine expressions for the local and convective
components of acceleration in the x and y directions.

o

What is the magnitude and direction of the velocity and the
acceleration at the point x = y = 2 m at the time t = 07




Example 3

* Consider the steady, two-dimensional velocity field given by
V=(uv)=(3+28xi + (15— 28y)j

» Verify that this flow field is incompressible.

Solution

* Analysis. The flow is two-dimensional, implying no z component of
velocity and no variation of u or v with z.

» The components of velocity in the x and y directions respectively are

u=13+28x v=15-238y

* To check if the flow 1s incompressible, we see if the

incompressible continuity equation is satisfied:

@-0-24- =0 or 28-28=0

Ox

[——

28 33 Osimce2D
* So we see that the incompressible continuity equation is indeed
@ satisfied. Hence the flow field 1s incompressible.




@

Example 4

» Consider the following steady, three-dimensional velocity
field in Cartesian coordinates:
V= (u, v, w) = (axy2 — b)i 4 Cy3f + dxylz
where a, b, ¢, and d are constants. Under what conditions is
this flow field incompressible?

Solution
Condition for incompressibility:
ou 8\ 8\/ ay® +3cy* =0
ox oy for
B e
@' 37 O

» Thus to guarantee incompressibility, constants a and ¢ must
satisty the following relationship:

d= =3¢




Example 5

* An idealized incompressible flow has the proposed three-
dimensional velocity distribution

V = 4xy’i + fiy)j —
* Find the appropriate form of the function f{y) which satisfies
the continuity relation.

* Solution: Simply substitute the given velocity components
into the incompressible continuity equation:

é‘u 07v dw d 2. df 0 df
4 — 4y° +———y" =0
T T e e
or: d—f=—3y2. Integrate: f(y)= I (-3y*)dy = -y +constant Ans.

dy




- Example 6

* For a certain incompressible flow field it i1s suggested that the
velocity components are given by the equations

u=2xy v=-xyy w=0
Is this a physically possible flow field? Explain.

Any /obysléa//g possible /}vcom/arrssllle_ Fhow freld
must satisty, Consevatwn Of mess @5 expressed by

m Vt/d. éll.PIISﬁ I.P

x 7T 29 T Jz=° e

L AN
S
n
N
(X
‘Q;
S
]
|
*
N
lg )
I
)

Substituton 1°f Eg (1) Shows thad

2y -x*+0 # o
@ Thus, This is rol & physically possible +hw freld g




Example 7

» For a certain incompressible, two-dimensional flow field
the velocity component in the y direction is given by the
equation

v = x° + 2xy

* Determine the velocity in the x direction so that the
continuity equation is satisfied.




Example 7 - solution

To sabisty the continuity €g uation,
20 .
% * 54 =0 <)

S/.ﬂtt a U=

29
Then from Ep. (1)

=2_x

314._ &2
P Tk

Eguation (2) can be integmted wity vespect to X 4o obtasy

fa/« = -ﬁxdx + 7C(_9)

U= —-x*4 £ty )

oFr

where  F(y) is an undelermined Fynetioy of q.




1.1 Introduction:

The objective is to determine the flow around a sold body.
To find the velocity and thus the pressure distribution

i
s

Airfoil Streamlines

Cylinder Streamlines

25

“aun



Visualization of flow Pattern

m The flow velocity is the basic description of how a fluid moves in time and space, but

in order to visualize the flow pattern it is useful to define some other properties of
the flow. These definitions correspond to various experimental methods of
visualizing fluid flow. They are :

a. Streamlines
b. Pathlines
c. Streaklines

Airplane surface

CAR surface pressure
pressure contours,
contours volume

and . streamlines, and
streamlines surface

streamlines




Stream line

v'A Streamline is a curve that is
everywhere tangent to the
instantaneous local velocity vector.

v'It has the direction of the velocity vector
at each point of flow across the streamline.

Character of Streamline :

1. Streamlines can not cross each other.
(otherwise, the cross point will have two
tangential lines.)

2. Streamline can't be a folding line, but a
smooth curve.

3. Streamline cluster density reflects the
maghitude of velocity. (Dense streamlines
mean large velocity; while sparse
streamlines mean small velocity.

Point (x+dx, y+dy) Q

Streamline

)

8

Point (x, y)

Stream Line




PATHLINE

v'A Pathline is the actual path represents one particle
travelled by an individual fluid —% / o sl snapshots
particle over some time period. (_/—\

o®

v Same as the fluid particle's e
material position vector . then shows how the .
pathline

patticle mowves in the
flud

v And the path of a particle
same as Streamline for Steady

Flow.
0 Fluid particle at 7 = 7,

Pathline Y i

‘--~ &
> “ . 4

Fluid particle at r = 7,4

Fluid particle at some
intermediate time



Streak line and Stream Tubes

v' A streakline is the locus of
fluid particles that have
passed sequentially through a
prescribed point in the flow.

v' Easy to generate in
experiments like dye in a
water flow, or smoke in an
airflow.

v/ Streamtube : is an
imaginary tube whose
boundary consists of
streamlines.

v" The volume flow rate must
be the same for all cross
sections of the stream tube.
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Flow Net

id body we shall define the following

ine the flow field around a sol

- In order to determ

ich define the streamlines)

1. Stream Function (wh

2. Potential Function (which define the potential lines)

Potential lines

_— Streamlines




Flow Net

/

s A grid obtained by drawing a series of stream lines and
equipotential lines is known as a flow net.

** Flow net provides a simple graphical technique for studying two
- dimensional irrotational flows, when the mathematical
calculation is difficult.

s The stream lines and equipotential lines are mutually
perpendicular to each other.

s A flow net analysis assist in the

design of an efficient boundary

shapes.

\/

% |tis also used to calculate the

flow at ground level.

Flow Net




1.3 Stream Function b 4.

*3* Streamline in a fluid flow is an imaginary curve in which the tangent at any point

represent the velocity vector at that point.

\/
** It is defined as the scalar function of space and time, such that its partial derivative
with respect to any direction gives the velocity component at right angles to that direction

. It is denoted by  (psi) and defined for two dimensional flow.



Stream Function Y,

*$* The slope of the streamline at point (1) is:

dy v
tan = _~ = _ streamlin

dx u e
. dy v . . . . . . . X
s = ; ... ... (x) differential equation for a streamline in two-dimensions.

‘:‘ If u and v are known functions of X and y then eq (*) can be integrated to yield the algebraic

equation for a streamline.
f(x,y)=c¢
where ¢ = constant of integration with different values for different streamlines.

*%* The function f(x,y) is called the stream function and is denoted by the symbol

Py =c .. .....€quation for a streamline



7/
*°* Properties of Stream Function:

B Since no fluid can be cross s streamline, the flow occurring between two

streamlines must remain unchanged.
Q12 = Q13 = u by + (—v dx)

Also

Qiz= Q13 =Y —YP1 =08y

oY =udy —vox o ... (i)

X
but
oY = v oy + Wex o (i)
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1.1 Introduction:

The objective is to determine the flow around a sold body.
To find the velocity and thus the pressure distribution

i
s

Airfoil Streamlines

Cylinder Streamlines

“aun



Visualization of flow Pattern

m The flow velocity is the basic description of how a fluid moves in time and space, but

in order to visualize the flow pattern it is useful to define some other properties of
the flow. These definitions correspond to various experimental methods of
visualizing fluid flow. They are :

a. Streamlines
b. Pathlines
c. Streaklines

Airplane surface

CAR surface pressure
pressure contours,
contours volume

and . streamlines, and
streamlines surface

streamlines




Stream line

v'A Streamline is a curve that is
everywhere tangent to the
instantaneous local velocity vector.

v'It has the direction of the velocity vector
at each point of flow across the streamline.

Character of Streamline :

1. Streamlines can not cross each other.
(otherwise, the cross point will have two
tangential lines.)

2. Streamline can't be a folding line, but a
smooth curve.

3. Streamline cluster density reflects the
maghitude of velocity. (Dense streamlines
mean large velocity; while sparse
streamlines mean small velocity.

Point (x+dx, y+dy) Q

Streamline

)

8

Point (x, y)

Stream Line




PATHLINE

v'A Pathline is the actual path represents one particle
travelled by an individual fluid —% / o sl snapshots
particle over some time period. (_/—\

o®

v Same as the fluid particle's e
material position vector . then shows how the .
pathline

patticle mowves in the
flud

v And the path of a particle
same as Streamline for Steady

Flow.
0 Fluid particle at 7 = 7,

Pathline Y i

‘--~ &
> “ . 4

Fluid particle at r = 7,4

Fluid particle at some
intermediate time



Streak line and Stream Tubes

v' A streakline is the locus of
fluid particles that have
passed sequentially through a
prescribed point in the flow.

v' Easy to generate in
experiments like dye in a
water flow, or smoke in an
airflow.

v/ Streamtube : is an
imaginary tube whose
boundary consists of
streamlines.

v" The volume flow rate must
be the same for all cross
sections of the stream tube.
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Flow Net

id body we shall define the following

ine the flow field around a sol

- In order to determ

ich define the streamlines)

1. Stream Function (wh

2. Potential Function (which define the potential lines)

Potential lines

_— Streamlines




Flow Net

/

s A grid obtained by drawing a series of stream lines and
equipotential lines is known as a flow net.

** Flow net provides a simple graphical technique for studying two
- dimensional irrotational flows, when the mathematical
calculation is difficult.

s The stream lines and equipotential lines are mutually
perpendicular to each other.

s A flow net analysis assist in the

design of an efficient boundary

shapes.

\/

% |tis also used to calculate the

flow at ground level.

Flow Net




1.3 Stream Function b 4.

*3* Streamline in a fluid flow is an imaginary curve in which the tangent at any point

represent the velocity vector at that point.

\/
** It is defined as the scalar function of space and time, such that its partial derivative
with respect to any direction gives the velocity component at right angles to that direction

. It is denoted by  (psi) and defined for two dimensional flow.



Stream Function Y,

*$* The slope of the streamline at point (1) is:

dy v
tan = _~ = _ streamlin

dx u e
. dy v . . . . . . . X
s = ; ... ... (x) differential equation for a streamline in two-dimensions.

‘:‘ If u and v are known functions of X and y then eq (*) can be integrated to yield the algebraic

equation for a streamline.
f(x,y)=c¢
where ¢ = constant of integration with different values for different streamlines.

*%* The function f(x,y) is called the stream function and is denoted by the symbol

Py =c .. .....€quation for a streamline



7/
*°* Properties of Stream Function:

B Since no fluid can be cross s streamline, the flow occurring between two

streamlines must remain unchanged.
Q12 = Q13 = u by + (—v dx)

Also

Qiz= Q13 =Y —YP1 =08y

oY =udy —vox ... (i)

X
but
oY = v oy + Wex o (i)



Comparing eq (i) & (ii) we note that:

Y Y
u=_" D= — —
ay ’ dx

In the cylindrical coordinates

_ 13y oy

T I Yo ar

. (4D)

..(4a)

°X

*Yy

rcos @

rsin @

B If stream function exists, it is a possible case of fluid flow which may be rotational

or irrotational.

B If stream function satisfies the Laplace equation, it is a possible case of an irrotational

flow.



** Continuity equation in terms of stream function:

au ov
(')x 6y
d [0y d oY
(ay) *ay (= ax) =
dx \dy/ 0y dx
02 02
v _ i =0 N )
dxdy 0dyodx

Continuity equation in terms of stream function
laaY ) Adly AV 4o ) i) ddalas




1.4 Potential Function (or Velocity Potential)

agad) adja

+++ For an irrotational flow:
7.g=0

* It is defined as a scalar function of space and time such that its negative

derivative with respect to any direction gives the fluid velocity in that

direction. It is denoted by @(x, y) phi.

]t




Velocity Potential Function

L/

q=Vo

¢ Thus
_ag - a0
- dx ’  ay

“ In the cylindrical coordinates:

a9 1 99
" ar ’

“* Mathematically the velocity potential @(x, y) may be defined as:

——tt—




m Continuity equation in terms of velocity potential:

9 (90\ 9 [(30\
=53t (55) =0

m Equation (7) Is known as Laplace equation

Y adalaa




Any function @ that satisfies the Laplace equation is a possible irrotational

fluid-flow case.

Principle of superposition 2ol dl>

If 4 and @, are solutions of equation (7) then (@1+ @) is also a solution.
If @, is a solution of equation (7) then (C @,) is also a solution, where C is

constant

Because irrotational flow can be described by the velocity potential @,

irrotational flow is called Potential flow

10



1.5.1 Uniform Flow: (Rectilinear Flow) - Uniform flow in the x-direction

oy o0 o
u= @—a @)
v=0 @ — (i)
from (I)

Y= [udy=uy or p=uy

also from (1)

0= [udx=ux or/d=ux

yA

v:O[

@1 02 O3

T Py
> Y3
- P2
> P



- Uniform flow in the

v-direction
u=0  —————— — (i)

Y A y, Y1 Y2 ¥3 Py
VT = —(ii) 11 1

X y y [
from (ii) T 1 - gz
Y=-vx D1
and
u_:’ X

D=vy 0




- General uniform flow

q= Ju2+ v2

Yy=uy—vx

O=ux+vy




s Summary

*+* Relation between stream function and velocity potential function, we have:

9, 9,
ay dx
Y aY
rvr=---— -
ox ady
*+* In the cylindrical coordinates:
1oy a0
Ur = r 40  or
9y 1 a0
Up = dx 1 do




Show that the two-dimensional flow described by the equation wy=x+x2-y? is

irrotational. Find the velocity potential for this flow.

W = Ko xS =y

Y
A\ — s ~L\3
S

N
\/ - . /& T ‘“\‘*1\&

DK
gﬁv oo - C3\““’\@1\3\'“\'\9\\ Q\QW
\'\)x - 9 ( \J\)B((Q

DV
Wy = —— O DN _

< 3K 3\j ~ =~ L X Pl

~ e N e A akign o

Pz ) wdx = oy dx o= mtaxor Fy)

NS (
\/:: ‘%‘\-LK‘-‘LK*Q\B}

QIQ“_)\ —;?\ = BAY =~k
@ = " HLRAK & C




4 4 Line Source

Flow is radially outwards. The “line" is at right angles
to the plane of flow, so is seen as a point in the

i




The strength of the source, m, is the discharge in m3/s
per m length of the line source: ie the units of mare
m2/s, the same as y.

discharge per unit
width = m
Zm")
- m/( area per unit width
= 2nr

W

velocity
= (discharge)/(area)

=\ w=m/(2nr)




For a line source of
strength m:

w=wh
= w = [m/(2nr)]x(r 6)

=\yw=m6/(2n)




1.5.2 Source Flow iall

5 Source
- Strength of the source, K = —~ m—]
21 sm _
1 a‘[l) a0 . Streamlines () = const)
U, = T a 0 a r — (i)
ug=0 = —(ii)
from (i)
Y = f ru,do = f ¢ do = f K do
2T r /
p— Velocity potential lines
/ lp Ko / (@ = const)

and

Q dr
(Z):furdr:f dr = | K—

21T r

/ O =KlIn T/ . “




1.6 Combination of Basic Flows

1.6.1 Uniform Flow and Source

Staanation
Foint ¥ T

F
—_— - —_— -

Source Flows
—_— -

K
U

A

uniform flow

P C.
U Il /
Half-Body Q

(Rankine Shape) ¥ =const=3

Uniform flow Source Resulting
Yy=Uy Yy=K@0 Yy=Uy+KB®6
D=Ux dD=Klinr D=Ux+Klinr
The resulting ¢ is:

Yy=Uy+K@0

Py =Ursinf + K 0 = constant




Yy=Ursin6+K®6

Ug = —z—:lfz—UsinB

Points B is the stagnation point and can be located by setting the equation for

U,- and Uy equal to zero
K

U cos 0B + =0 N € ),
B
UsinOBg =0 N (1))
from (ii): sinfOp=20 = Op=m
. _K _ K
subin (i): U s = =

.. coordinates of B (rg,0p) = (— n)



sub the coordinates of B inthe equ of Y yields: W= Ursing + K6

K
Y=U-—sinmt+ K = const

U Stagnation .
Faoint T - - B
Y=Km = - e
e ——
E - il 5 -
. — Q _Q = _Eaurce flasvw
"II)_—”_— = —— -—
2T 2 —

- Halt-Bady R _:/1 B
IRankins Shape)

the streamline ABC (1[) = Q) is adividing

streamline. 2

This streamline could be replaced by a solid

surface of thesame shape, forming a semi —

infinite body ( half — body) (Rankine Shape)






4.5 Uniform Flow + Line Source

At any point in the field, wy =vy +m 6 /(2n)

///

25
et
t




Note.:

in the equation y=uy+m 8 /(2n),

6 = tan-! (y/x)

Lines of constant w=uy+m 6 /(2m)look like
this:

—
=

=
=




.. S0 these streamlines represent the
combination of uniform parallel flow with flow

fmmw/
# /

uniform parallel flow
A

We can identify the stagnation point where the
two flows cancel, and the stagnation or dividing
streamlines which pass through this point.




Outside the dividing streamlines, this is a good
model of flow meeting the front of a rounded
body, shaped like the two dividing streamlines
in the right hand half of the picture

/
=

This shape is called a

N

*W J M Rankine 1820-1872: professor of Engineering, University of
Glasgow, from 1855




4 6 Line Sink

Flow is radially inwards. A line sink is the opposite of a
line sourcel!

For a line sink of strengthm: | ¢ =-m@& /(2n)




1.5.3 Sink Flow

- Asink is a source with negative strength, K = — %,
10y 090 :
U= 736 or Y
Ug = o -\ _(ii)
from (i)
/¢ =—K@8 /
and
/q) =—KlIn r/

Sink

Streamlines (Y = const)

Velocity potential lines
(@ = const)



1.5.4 Doublet Flow s34l

A doublet is a special case of a source and sink pair when the two approach each

other under the limiting case of:

1. The distance I = 0
2. The product (Q .1 also called doublet strength (i), remains constant
Yy=KO0;1—-—KO,=K(@1—03)=—-KJbb

As shown in figure:

a=1.sin0 =660.r ! »
00 = l.sin@ Sr g ' s;urcef
r 4‘—\%1 3 > X k
_K.l.sinH i

r

‘. ll} = sozb'ce / s?&zk
k -k



- K.l.sin@
N r
Q.l.sin @
S 2.1
but Q.l= pu
_ _ —usin@
/" Y= 2T T /
and

_ p cos@
/E)Z:rr r

/

Hint:

=K In(r +6r) — K Inr

®=K1n(1+$)=f((

or
®~K—
r
or
D=K—=K

o _

T

(67)*

(67)°

2 re

33

r

2w r

2T r

l.cos@ (Q.l.cos@ u cos@

Streamlines

P
r

o Axisof

the doublet x

doublet flow
.1!
A
P
00
g
or v a
\\ 82
%’ 91 - X
sod'r'ce / 5'1'|k
k -k



4.7 Source and Sink (of equal strength)
The diagram shows a source and a sink of equal
strength m, placed on the x-axis, a distance 26 apart.

At point P, w,=m6,/(2m)-m 6., /(2n)
where 6,=tan(y/(x+b)) and 6, =tan(y/(x-b))

P

7o

AR

. 6, r : [ g
LS N T N XD/ /1 IANDN N o
X =Dy
N 2, | I T

ET Bl (o S



.. S0 these streamlines represent flow from a
line source to g line sink.

Lines of constant w=m 6, /(2r) - m 6. /(2m)
look like this:

—
&

(0)




11- In an infinite two-dimensional flow filed, a sink of strength 3/27 m’/s.m is located at
the origin, and another of strength 4/2m m’/s.m at (2, 0). What is the magnitude and
[0.429 m/s ; -68.22°]

direction of the velocity at point (0, 2).

e Fm KKy A
= Kl [x ey ke S (x-2) ey

—,‘,7%:;:‘, ,b ¢ = 'I< . Zx - ,k,, S Z(K"‘ Z,)

2% = Ty o)

V= O& =k Zfﬁ' Ky A4
29 2(>< +‘j‘)

a’ /29//7% (o,‘z),. X
we o blain o
,m_qm_m(;(,,,_:.-wagj_jlﬁ_m/5,@ N

=0 9= 2

e M s SRR M e

.___Agz _M_T/z,{m.._{, L2 ) B B

gj’ = 0479 g /11/ < . o

i

- . . z )
= ’,/ﬂli 7 \% = -»-_6»8‘_2«»2? S —

Cr((x2) ),

. oY)
= I NSO = {
i i
I ~ e/ 1Y
!
_ ; 3 & & i
(&0) (Z/0) X
- X

23

Y

™

\\
N
) || II

74
//



4.7 Doublet

A source (A) and a sink (B) of equal strength m are
moved progressively closer together, at the same time
increasing the strength, so that k= mb = constant.

APy
" & 9\ & 6, [ 1
A B
MSENE TR >, .
=8 N | X-b_
O .. P, SN
- I Y - N



As b— 0, both 6,and 6, — 6. and both PAand PB — r.
By the sine rule, sin(6, - 6,) = sin 8,x 2b/(PA),

soas b— 0, sin(6, - 8,) —> sin @ x2b/(PA) = (y/r)x2b/(r).
Since a small angle (in radians) is equal to its sine, this can
be written: (6, - 6,) = 2by/r?.

Now the stream function for source and sink is given by:

w=mé,/(2n)-m86,/(2n) _— P

or w= (m/(2m))x(6, - 6,) |

Hence y= (m /(2n))x(-2by/r?) | Y

But bxm = k, so: - 6, | 5\ 8, ‘_ 5

v=-(k/(2m)) x 2y/r?, A B '

or: w = -(k/m)xy/r2, = |<X+b .........................
.......... X-b,

or: ¢ = -(k/m)x y/(x?+ y?) |——— X oo _




A system consisting of a source and sink placed very
close together is called a "Doublet”. The equations for
stream function for a doublet are summarised below:

Z x 2 or:
= -ky/(mr?),
or, since y=rsin 6 and x2+ y2= r2,
v = -ksin@/(mr)

- 2 2

(Remember: the source and the sink are 256 apart.

heir stnengths are m and -m respectively, and
M: )




4 .8 Uniform Flow + Doublet

This time the "dividing streamlines” form a circle”,
and the streamlines outside represent flow of an
ideal fluid round a cylinder.

The stream function for this combination is given by:
y=uy-kyl/(m(x?+y?))

and, outside the dividing streamlines, lines of constant
@ look like this:




1.6.3 Uniform Flow and a Doublet (Non Lifting flow over a Cylinder)

Stagnation streamline =0 *=R

i
ﬂ
ﬁ
U
ﬁ
Uniform flow Doublet Flowover a cylinder
Y=U 1.[}__Lsin& _u U sin@
- vy 2T r Yy=Uy - E r
O=Ux cos 0 cos @
0= O=Ux+-

47



The resulting 4is:

Y = lI)uniform flow T Ydoublet

_ K sinf : K sinf
Yy=U P =Ursin0 P = const
_ : __ K
1/)—Ur51n0(1 anrz)
u
let; R? =——
¢ 2 U

48



Points A and B are stagnation points and can be located by setting the equations for

u,- and uy equal to zero

- Coordinates of A(r,0) = (R, m)

- Coordinates of B(1r,0) = (R, 0)

Substitute the coordinates of A and B in the equation of ¥ yields:

R?2
P =URsinm (1— ﬁ)

Yv=0
= the streamline passing through A and B is a dividing streamline.

The streamline could be replaced by a solid surface of the same shape forming a circular

cylinder with radius:

R= |——
2t U

49



*The pressure distribution on the cylinder surface is obtained as follows:
B larv Conditions:

Velocity component normal to the surface =0

- atr=R ,u,;=0

- and ug,=-—-2U sin@

* Bernoulli equation between (0) and (s); assume Z, = Zs

1 5 1 2
PO+§pU = Ps + Epues

= P, = P, + % pU? (1—4 sin?9) e eee e e (%)
» The surface pressure as obtained by equ (*) is the theoretical (non-viscous) pressure

distribution.

50



* The figure shows a comparison of theoretical with experimental distribution.

I e
uz(l—élsinze):Cp i ‘/OAX\\
1 0 M

2PV
/ (a)

Cp =pressure coefficient 1-4 inze B

Theojretical \ /\ /
+)
_2 | 1l | J
N W 180° w 360°
)

(b)

0 30 60 9% 120 150 180

* The pressure distribution is symmetrical around the cylinder and the resultant force

y
developed on the cylinder = zero

~Fx=0 (dragforce) Fy

and F, =0 (lift force)



1.6.2 Uniform Flow and Source - Sink pair

P(x, y)

Stagnation streamline, {/ =0

The strength of the source and sink are K and — K respectively (equal and opposite).
The resulting ¥ is:

¢ = 1I)uniform flow + ¢source + ¢sink
Yy=Uy + K01 — K0, = constant



or

y y
_—U -I—Kt -1 _Kt -1 Stagnation streamline, ¥/ =0
v Y an x+b anl x—Db %%
/42)

= Source Sm

1 1
u=U+K — K

(x + b) [1 + (5 _{ b)zl (x — b) [1 + (=2 b)2]

Points A and B are stagnation points and can be located by setting the equation for

u equal to zero,withy = 0,x = OB or OA

1
(x + b) (x b)

2Kb
]=>x=OB=OA= i b2+T

0=U+K[ ] U+K[

at the stagnation point A; 6 = T,y =0

at the stagnation pointB; 6 =0,y =0

53



SR A=
+K[x’- 0
c S0 = Z N
L — /< ZE‘
7 e
= o 5 2
Ly : 2/{’9;(/57‘ g -




Set these values in the equation of Y we obtainy = 0

~ The streamline passing through A and B is a dividing streamline.

This streamline could be replaced by a solid surface of the same shape,

forming an oval called a Rankine oval.

The velosity potential is:

O=Ux+K Inr, — Klnr,

y y
.-.@:U.X"FK]I]:—l belb =
> Mo O
where:
ry = Jy2 + (x + b)?

V¥? + (x — b)?

rp



4.8 Source and Sink (of equal strength) combined
with Uniform Flow

At any point, y,=uy +m 6,/(2rn) - m 6, /(2nr)
where 6,=tan’(y/(x+b)) and 6, =tan(y/(x-b))

. ”
- ¢ = -
s — --91 s .
s - ,_
VNN SN I X'_’Zb_;___________l___\j::-i‘__‘ _______ ! _
. Al ‘..-.-A--X:b ........ o
T ]

IR - I SR -



Outside the dividing streamlines, lines of constant Tt\g d‘i\."d"g s;r"r' ean;h:; X :epres;gn’r a S:\a%e ealles
w=uy +m 9] /(277) -m 92/(27T)|00k like this: a KRankine oval , an e sTtreamliines oursiae

represent flow of an ideal fluid round a solid of

N this shape.
A

\L J/ /R;kine Ova?

|
|




I N

Uniformflow in x — direction YPy=uy D=ux
Uniformflow iny — direction Yy=-vx D=vy
General uniformflow Y=uy —vx D=ux+vy
Source PYy=K@o D=Klnr
Sink Py=—-KB0 d=—-Klinr
Doublet _TH sin 6 0 = 1 cos 0
2w r 2w r
Freevortex P = __F Inr 0 = L 0
21 21

22




Q1: A doublet is placed at the origin of coordinates (0,0). It is found that the velocity (q) at

point (0,5) is 10 m/s. Calculate the required doublet strength. Also calculate the value of
y for the streamline passing through point (0,5).

I. What are the characteristics of an ideal flow? Describe every characteristic.
2. Show that the two-dimensional flow described by the equation y=x+x*y? is
irrotational. Find the velocity potential for this flow.

3. A source strength (0.72 m2/s) is located at (-1,0) and a sink of twice the strength is
located at (+2,0) for free stream velocity of (2m/s). Find the velocity at (0,1) and (1,1).




20 A Q1: A doublet is placed at the origin of coordinates (0,0). It is found that the velocity (q) at
A= OeiSin D Qi L’R\)r\\
point (0,5) is 10 m/s. Calculate the required doublet strength. Also calculate the value of

o M ' . 0
s oy y for the streamline passing through point (0,5). S marks
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1. What are the characteristics of an ideal flow? Describe every characteristic.

2B

i @ 1. Aow WIS oo wy Q N« °>

Lo M weressib\e Cr-= Cans fant)

Clssaee T SR G ':\‘i,,g
o RN N B <
2 ewhinaiy 3 gquakiow
< . - ol s = ~NV N\ =
CL S => X x B * DT e

Y . \vwo&(&—fibv\(\\ Q\%\«D & Vo (‘\g\‘\\j '..\3)

MoK o s
@)W = R 2. Show that the two-dimensional flow described by the equation y=x+x*-y? is
e, : : : : : :
o s - irrotational. Find the velocity potential for this flow.

va RUEE - é\(MQV\SiQV\o\\ Q\Q\A

\v\_)x - O . \,N)\:>«'(Q
DNV
< 5% = — ~ U X = <D

o g\e\,‘\ N A 6\ c\"\‘\wv\ o\
© = S\)\c\\x = S—’L‘_’) Ax = -t AR+ £ (%)
=

= = -\-1.X =-1T X + C(\\_’)}

7 i)
FOsy -.?\ =5 F%) = Tk
LD e =R A KT
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3. A source strength (0.72 m2/s) is located at (-1,0) and a sink of twice the strength is
located at (12,0) for free stream velocity of (2m/s). Find the velocity at (0,1) and (1,1).

b ~(§ —\\3
3
v o= : bidl e
\P \\V\\QQWW\ *—L‘)_So\x\ka -\—IPSI.M(/\
W Wy K9, Lk S = wmrfart
’h)"\)\_’)*"\ &;v\\ = —~n ‘\‘“:‘»—:)\
X1 b % =\s
S
Ll
~WN\ =J % K \ \

=
RS N O R
at P oty Cof \3

W\ = L-\-Ko.'(k) \

= (Q.-; k)

-2 ()

2
<

\
ST

= % \«v\()
0:( ()O\W\k \\| \\
N = T X QO?' ’L)

x =N § 7) \
\ & 3 N \“ AT i N Y —

SN LSRN (g 62



EXAMPLE 6.2: The velocity components in a two-dimensional velocity field for an
incompressible fluid are expressed as

3
uz%—%l‘r—xzy

3
A

v=xy2—2y—?

Show that these functions represent a possible case of an wrrotational flow.

SOLUTION: The functions given satisfy the continuity equation (Equ. 6.3), for their
partial derivatives are
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EXAMPLE 6.3: A stream function is given by may also be expressed in terms of y by substituting Eqs. (6.12) and (6.13) into Equ. (6.14)

p=3x" -y

Determine the magnitude of velocity components at the point (3,1).

) ) However, for irrotational flows, { = 0, and the classic Laplace equation,
SOLUTION: The x and y components of velocity are given by
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X-component: i = W _ i(:,sz -y’ ): —3y? ot oy
dy Oy
results. This means that the stream functions of all irrotational flows must satisfy the Laplace
equation and that such flows may be identified in this manner; conversely, flows whose y
oy 0 2 3y does not satisfy the Laplace equation are rotational ones. Since both rotational and irrotational
y-component: v=———= ——(Sx -y )— —6x

flow fields are physically possible, the satisfaction of the Laplace equation is no criterion of
the physical existence of a flow field.
At the point (3,1)
u=-3 and v=-18
and the total velocity is the vector sum of the two components.
V==3 —18;
Note that du/6x=0 and év/dy=0, so that
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