

Complexometric Titration II

Equilibrium Calculations Involving EDTA

• EDTA titrations are always performed in solutions that are buffered to a known pH to avoid interferences by other cations or to ensure satisfactory indicator behavior.

The cumulative stability constant

- M + L = ML
- $ML + L = ML_2$
- $ML_2 + L = ML_3$
- $ML_{(n-1)+}L = MLn$

$$\beta_{1} = \frac{[ML]}{[M][L]} = K_{1}$$

$$\beta_{2} = \frac{[ML]^{2}}{[ML][L]} = K_{1}K_{2}$$

$$\beta_{3} = \frac{[ML]^{3}}{[ML_{2}][L]} = K_{1}K_{2}K_{3}$$

$$\beta_{n} = \frac{[ML]^{n}}{[ML_{(n-1)}][L]} = K_{1}K_{2}K_{3} \dots Kn$$

• Since EDTA is a tetraprotic acid, the stepwise dissociation of EDTA as follows :

$$H_{4}Y \longleftrightarrow H^{+} + H_{3}Y^{-} \qquad K_{a1} = \frac{[H^{+}][H_{3}Y^{-}]}{[H_{4}Y]} = 1.0 \times 10^{-2} = \beta_{1}$$

$$H_{3}Y^{-} \longleftrightarrow H^{+} + H_{2}Y^{2-} \qquad K_{a2} = \frac{[H^{+}][H_{2}Y^{2-}]}{[H_{3}Y^{-}]} = 2.1 \times 10^{-3} = \beta_{2}$$

$$H_{2}Y^{2} \longleftrightarrow H^{+} + HY^{3-} \qquad K_{a3} = \frac{[H^{+}][HY^{3-}]}{[H_{2}Y^{2-}]} = 6.9 \times 10^{-7} = \beta_{3}$$

$$HY^{3} \longleftrightarrow H^{+} + Y^{4-} \qquad K_{a4} = \frac{[H^{+}][Y^{4-}]}{[HY^{3-}]} = 5.5 \times 10^{-11} = \beta_{4}$$

Y⁴⁻ form of EDTA is the predominate form at pH greater than 10

$$\alpha_{\rm M} = \frac{1}{1 + \beta_1[L] + \beta_2[L]^2 + \beta_3[L]^3 + \dots + \beta_n[L]^n}$$

$$\alpha_{\rm ML} = \frac{\beta_1[L]}{1 + \beta_1[L] + \beta_2[L]^2 + \beta_3[L]^3 + \dots + \beta_n[L]^n}$$

$$\alpha_{\rm ML_2} = \frac{\beta_2[L]^2}{1 + \beta_1[L] + \beta_2[L]^2 + \beta_3[L]^3 + \dots + \beta_n[L]^n}$$

$$\alpha_{\rm ML_n} = \frac{\beta_n[L]^n}{1 + \beta_1[L] + \beta_2[L]^2 + \beta_3[L]^3 + \dots + \beta_n[L]^n}$$

 $C_{EDTA} = [Y^{4}] + [HY^{3}] + [H2Y^{2}] + [H3Y] + [H4Y]$ $\alpha_{4} = \frac{[Y^{4}]}{C_{EDTA}} \qquad K_{MY} = \frac{[MY^{(n-4)+}]}{[Mn+]\alpha_{4}C_{EDTA}}$ $M^{n+} + Y^{4-} \longleftrightarrow MY^{(n-4)+}$

Combining the two constants α_4 and K_{MY} yields the conditional formation constant K'_{MY}

$$K'_{MY} = \alpha_4 KMY = \frac{[MY^{(n^-4)^+}]}{[M^{n^+}]C_{EDTA}}$$

K'_{MY} is a constant only at the pH for which α_4 is applicable

- It can be used to calculate the equilibrium concentration of the metal ion and the complex at the equivalence point and where there is an excess of reactant.
- Using C_{EDTA} instead of Y⁴⁻ in determination of K'_{MY} simplifies calculations.

Conditional (or effective) Formation Constant

- They are pH-dependent equilibrium constants that apply at a single pH only.
- Such constants are very useful for determining the effect of pH on the free ligand concentration in a complexation reaction.
- simplifies calculations because C_{τ} is often known or is easily computed.

pН	α_4	pН	α_4
2	3.7×10 ⁻¹⁴	8	5.4×10 ⁻³
3	2.5×10 ⁻¹¹	9	5.2×10 ⁻²
4	3.6×10 ⁻⁹	10	3.5×10 ⁻¹
5	3.5×10 ⁻⁷	11	8.5×10 ⁻¹
6	2.2×10 ⁻⁵	12	9.8×10 ⁻¹
7	4.8×10 ⁻⁴		

Value for $\alpha 4$ for EDTA at selected pH value

Formation Constants for EDTA Complexes

Cation	$K_{\rm MY}^{*}$	$\log K_{\rm MY}$	Cation	K _{MY}	$\log K_{\rm MY}$
Ag^+	2.1×10^{7}	7.32	Cu ²⁺	$6.3 imes 10^{18}$	18.80
Mg ²⁺	4.9×10^{8}	8.69	Zn^{2+}	$3.2 imes 10^{16}$	16.50
Ca ²⁺	$5.0 imes 10^{10}$	10.70	Cd^{2+}	$2.9 imes 10^{16}$	16.46
Sr ²⁺	$4.3 imes 10^{8}$	8.63	Hg ²⁺	$6.3 imes 10^{21}$	21.80
Ba ²⁺	5.8×10^{7}	7.76	Pb^{2+}	$1.1 imes10^{18}$	18.04
Mn^{2+}	6.2×10^{13}	13.79	Al^{3+}	$1.3 imes 10^{16}$	16.13
Fe ²⁺	$2.1 imes 10^{14}$	14.33	Fe ³⁺	1.3×10^{25}	25.1
Co ²⁺	$2.0 imes 10^{16}$	16.31	V^{3+}	$7.9 imes 10^{25}$	25.9
Ni ²⁺	$4.2 imes 10^{18}$	18.62	Th^{4+}	$1.6 imes 10^{23}$	23.2

Computing α_4 Values for EDTA Solutions

- Calculate the molar Y⁴⁻ concentration in a 0.0200 M EDTA solution buffered to a pH of 10.00.
- <u>Solution</u>

At pH 10.00, α_4 is 0.35 (*see previous table*). Thus, $[Y^{4-}] = \alpha_4 \times C_{EDTA} = 0.35 \times 0.0200 \text{ M}$ 7.00 x 10⁻³ M

Calculating the Cation Concentration in EDTA Solutions

 Calculate the concentration of free Ca²⁺ ion in a 0.10 M solution of CaY²⁻ at pH=6 and pH=10, using the given values in the previous tables.

$$Ca^{2+} + Y^{4-} \longleftrightarrow CaY^{2-} \qquad K'_{CaY}^{2-} = \alpha_4 K_{CaY}^{2-} = \frac{\lfloor c_{CaY}^{2-} \rfloor}{\lfloor Ca^{2++} \rfloor C_{EDTA}}$$

$$x \qquad x \qquad 0.10-x$$

$$K'_{CaY}^{2-} = \alpha_4 K_{CaY}^{2-} = \frac{0.10 - X}{X^2}$$

Metal-EDTA titration curves

- Titration is perform by adding the chelating agent (EDTA) to the sample (metal).
- Titration curve is plotting the changes in metal ion concentration (pM) versus volume of titrant (EDTA)
- Example of complexometric titration is by adding 0.100 M EDTA to 100 ml 0.100 M Ca²⁺ solution buffered at pH 11

$$Ca^{2+} + Y^{4-} \longrightarrow CaY^{2-}$$

• **Before titration started** – only have Ca²⁺ solution.

 $pCa = - \log [Ca^{2+}]$

 Titration proceed – part of Ca²⁺ is reacted with EDTA to form chelate. [Ca²⁺] gradually decrease.

pCa= -log [remaining Ca²⁺]

 At equivalence point – have converted all Ca²⁺ to CaY²⁻ So pCa can be determined from the dissociation of chelate at a given pH using K_f.

$$K'_{f} = K_{f} \alpha_{4} = \frac{[CaY^{2-}]}{[Ca^{2+}] C_{H4Y}}$$

 Excess titrant added – pCa can be determined from the dissociation of chelate at a given pH using K_f.

EDTA Titration Curve

Region 1

Excess M^{n+} left after each addition of EDTA. Conc. of free metal equal to conc. of unreacted M^{n+} .

Region 2

Equivalence point: $[M^{n+}] = [EDTA]$ Some free M^{n+} generated by $MY^{n-4} \Leftrightarrow M^{n+} + EDTA$

Region 3

Excess EDTA. Virtually all metal in MYⁿ⁻⁴ form.

Exercise

Calculate pCa in 100 ml of a solution of 0.100 M Ca²⁺ at pH10 after addition of 0, 50, 100, 150 ml of 0.100 M EDTA. K_f for CaY²⁻ is 5.0x10¹⁰ and α_4 is 0.35.

Solution

 $K'_f = K_f \times \alpha_4$

 $= 5.0 \times 10^{10} \times 0.35$

 $= 1.75 \times 10^{10}$

a) Addition of 0.00 ml EDTA

$$[Ca^{2+}] = 0.100 M$$

pCa = - log 0.100
= **1.00**

b) Addition of 50.00 ml EDTA

Initial mmol Ca²⁺ =100ml x 0.100 M =10 mmol mmol EDTA added = 50ml x 0.100 M = 5 mmol mmol Ca²⁺ left = 5 mmol

$$[Ca2+] = 5 mmol = 0.0333 M$$

(100+50)ml
pCa = - log 0.0333 = **1.48**

c) Addition of 100 ml EDTA

Initial mmol Ca²⁺ =100ml x 0.100 M =10 mmol

mmol EDTA added =100ml x 0.100 M = 10 mmol

Equivalence point is reached. We have convert all Ca²⁺ to CaY²⁻. mmol CaY²⁻ = mmol initial Ca²⁺

$$[CaY^{2-}] = \underbrace{10 \text{ mmol}}_{(100+100)\text{m}} = 0.05 \text{ M}$$

$$\begin{bmatrix} K'_{f} = K_{f} \alpha_{4} = [CaY^{2-}] \\ \hline [Ca^{2+}] C_{H4Y} \end{bmatrix}$$

$$K'_{f} = [CaY^{2-}] = 1.75 \times 10^{10}$$

$$\boxed{[Ca^{2+}] C_{H4Y}}$$

$$\underbrace{0.05}_{(x)(x)} = 1.75 \times 10^{10}$$

$$\underbrace{x = 1.7 \times 10^{-6}}_{x \text{ so pCa}} = -\log 1.7 \times 10^{-6} = 5.7$$

d) Addition of 150 ml EDTA

Initial mmol Ca²⁺ =100ml x 0.100 M =10 mmol mmol EDTA added =150ml x 0.100 M =15 mmol mmol EDTA excess = 5 mmol

$$C_{H_{4}Y} = \underline{5 \text{ mmol}}_{(100+150)\text{ml}} = \mathbf{0.02M} \quad [\text{Ca}Y^{2-}] = \underline{10} = \mathbf{0.04M}$$

$$(100+150)\text{ml}$$

$$K_{f} = \underline{[\text{Ca}Y^{2-}]}_{[\text{Ca}^{2+}]} = 1.75 \text{ x } 10^{10}$$

$$\underline{0.04}_{(x)(0.02)} = 1.75 \text{ x } 10^{10}$$

$$x = 1.14 \text{ x } 10^{-10} \quad \text{so pCa} = -\log 1.14 \text{ x} 10^{-10} = \mathbf{9.94}$$