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Introduction:

The natural numbers, namely 1, 2, 3, 4,....

The whole numbers 0,1,2,.....

The integers, namely 0, +1, +2,+3, ...

The rational numbers, namely the numbers that can be
expressed in the form of a fraction m/n , where m and n are
integersand n # 0

~OodE

Examples:1/2,-3/4, 57/1,200/13...
The rational numbers are precisely the real numbers with
decimal expansions that are either:
(@) Terminating (ending in an infinite string of zeros), for
example,
(b) Eventually repeating (ending with a block of digits that
repeats over and over), example:

23/11= 2.090909..= 2.09
3/4 = 0.75000+ = 0.75

5. Irrational numbers. They are characterized by having
nonterminating and nonrepeating decimal expansions

EX.V3,V5, .
Real numbers that are rational and irrational numbers (all
number groups)
The real numbers can be represented geometrically

as points on a number line called the real line.
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TABLE 1.1 Types of intervals

Notation Set description Tvpe Picture
Finite: (a. D) {x]a < x < b} Open
a b
[a. 5] {x]a = x = b} Closed N
a b
[a. b) {x]a = x < b} Half-open
a b
(a. D] {xla < x = b} Half-open
a b
Infinite: (a, o0) {x|x = a} Open
a
[a. ) {x|x = a} Closed
a
(—oo, b) {x|x < b} Open — o
(—o0. 0] {x|x = b} Closed - .
(—o0. 00) R (set of all real
numbers) Both open -
and closed
EXAMPLE 1  Solve the following inequalities and show their solution sets on the real
line.
@ 2x—1<x+3 (b)—§<2r+1 (f)rf125
= x Solution
0 1 4
(a) (a) 2y — 1 <x + 3
‘ | 2y <x + 4 Add 1 to both sides
X
_% 0 1 x <4 Subtract x from both sides.
® The solution set is the open interval (—oco, 4) (Figure 1.1a).
1 -
0 i T * ) —Z <o+
5 3
(c) —x << 6x + 3 Multiply both sides by 3.
FIGURE 1.1 Solution sets for the O=7r3 Addtobotb s
inequalities in Example 1. -3 < 7Tx Subtract 3 from both sides.
—% < X Drvide by 7



Absolute Values and Intervals
If @ 1s any positive number. then

5 |x|=a ifand only if x = +a

6. |[x|<a ifandonlyif —a <x <a
7. |x| > a ifandonlyif x > a or x < —a
8. |x|=a ifandonlyif —a =x =a
9. |x|=a ifandonlyif x =a or x = —a

EXAMPLE 4  Solving an Equation with Absolute Values

Solve the equation [2x — 3| = 7.

Solution By Property 5. 2x — 3 = +7. so there are two possibilities:
Equivalent equations

x—=3=7 2x—3=-7 without absolute values
2x = 10 2v = —4 Solve as usual.
xr=3 xr= -2
The solutions of [2x — 3| = 7are x = 5 and x = —2.

EXAMPLE 5  Solving an Inequality Involving Absolute Values

. . 2
Solve the mequality |5 -5 < 1.
1.1 Real Numbers and the Real Line
Solution ~ We have
‘5 - % <le—-1<35-— % <1 Property 6
2 ) _
= —06 < -5 < —4 Subtract 5.
1 . 1
S3>5>12 Multiply by —5-
(:)l < X < l Take rect 1
3 - 2 . aKe lec1proca S.




solve the inequalities and show the solution sets on
the real line.

5. 2x = 4 6. 8 —3x =5
d 7.5x—3=7— 3% 8. 3(2 —x) = 2(3 + x)
R S 6 —x _3x—4
9. 2x — 3= ix + 5 10. T 3
4 1 xr+5 12+ 3x
11. ;{.ﬁ —2) < g[‘r — 6) 12. — ;= y)
Absolute Value
Solve the equations in Exercises 13—18.
) 13. [y =3 14. |y — 3| =7 15. [2t + 5| = 4
¥16. |1 —t[=1 17. |8 — 35| = = 18.%—1‘=1

Functions and Their Graphs

2. DEFINITION OF A FUNCTION
A function, defined for all numbers, 1s an association
which to each number associates another number. If we

denote a function by (f), then this association is denoted
by:
x = f(x)

We call f (x) the value of the function at x, or the image
of x. f(x) also can be written as:

y=f(x)
The set D of all possible input values is called the domain of the

function, all values of f(x) as x varies throughout D is called the
range of the function.



A function can also be pictured as an arrow diagram (Figure
1). Each arrow associates an element of the domain D to a
unique or single element in the set Y.

X T ‘\“x
- - e f(a)

a = fx)
D = domain set ¥ = set contaiming
the range

FIGURE 1.23 A function from a set D to
a set ¥ assigns a unique element of ¥ to
each element in D.

EXAMPLE 1  Identifying Domain and Range

Verify the domains and ranges of these functions.

Function Domain (x) Range ()
y=x (—00, o0) [0, =0)
v =1/ (—0,0) U (0, ) (—00.0) U (0, o0)
= Vx [0, o) [0, o)
vy=V4-—x (—o0, 4] [0, o)
y=VI1-—x? [—1.1] [0. 1]

Example 2

1. Linear function: f:x - ax+ b
2. Quadratic function: f(x) » ax* +bx+c, where a,b,and c are

constantand a0

) G(xX)=0if x isa rational number.
3. Let G be the function: ») o _
G(x) =1if x is not a rational number

4. fix > fx):f(x) =0




5, f:xa%x):f(x) + 0

A way to visualize a function is its graph. If fis a
function with domain D, its graph consists of the points in
the Cartesian plane whose coordinates are the input-output
pairs for f.

=2 0
FIGURE 2  The graph of FIGURE 4 If (x. y) lies on the graph of
flx) = x + 2 is the set of points (x. y) for [ then the value y = f(x) is the height of
which y has the value x + 2. the graph above the point x (or below x if

f(x) is negative).

Not every curve in the coordinate plane can be the graph of a function. A
function f can have only one value for each x in its domain, so no vertical
line can intersect the graph of a function more than once. If a is in the
domain of the function f, then the vertical line will intersect the graph of
f at the single point . A circle cannot be the graph of a function since some
vertical lines intersect the circle twice. The circle in Figure 1.7a, however,
does contain the graphs of two functions of x: the upper semicircle
defined by the function and the lower semicircle defined by the function



a.a FLEEILLIULS SIS FEPS R U ENRR LS -

JV %

fa) x* + ¥ =1 (b v="%1—x* ) vy =31 — x°

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The upper

semicircle is the graph of a function f{x) = V1 — 1. (¢) The lower semicircle is the graph of a
et

function glx) = =1 — &%,

In Exercises 7 and 8, which of the graphs are graphs of functions of x,
and which are not? Give reasons for your answers.

7. a. ¥ b ¥

7. (a) Not the graph of a function of x since it fails the vertical line test.
(b) Is the graph of a function of x since any vertical line intersects the graph at most once.

EXAMPLE 3

2
Graph the function Y = X over the interval [-2, +2]

Solution

Make a table of xy-pairs that satisfy the function rule, in this case the
equation y = x? .



X y = x?
—2 4
—1 1
0 0
1
3 9
2 4
2 4

2. Plot the points (x. v) whose 3. Draw a smooth curve through the
coordinates appear in the table. Use plotted points. Label the curve with
fractions when they are convenient its equation.
computationally.

iy y

29 4L NesD 4L

y=x?
3 3L
39

o ° [5’ 1) 2+

LDy (| »@1D 1+
I I I I X | I | | x

2 -1 0 1 2 -2 -1 0 12

Fig. (5)

Piecewise-Defined Functions

Sometimes a function is described by using different formulas on different parts of its do-
main. One example is the absolute value function

X. xr=0
x| = o
—x, x < 0,

whose graph is given in Figure 1.29. Here are some other examples.



-3 -2 -1 0 1 2 3

FIGURE = (6) The absolute value
function has domain ( — 00, 00)
and range [0, 00).

EXAMPLE Graphing Piecewise-Defined Functions

The function

—X, x <0
flx) = X2, 0=x=1
1, x =1

is defined on the entire real line but has values given by different formulas depending on

the position of x. The values of f are given by: v = —x when x < 0,y = x> when
0=x=1.and v = 1 when x > 1. The function. however, is just one function whose

domain is the entire set of real numbers (Figure 1.30). [



4
V=-x y=fx)
2_
=1
1L ¥y
y=x?
| ! ! ! .
-2 -1 0 1 2

FIGURE 7 To graph the
function y = f(x) shown here.
we apply different formulas to
different parts of its domain
(Example 5).

EXAMPLE ; Solving an Equation with Absolute Values

Solve the equation |2y — 3| = 7.

Solution By Property 5. 2x — 3 = +7, so there are two possibilities:
Equivalent equations

—_ 2 — — g
2x 2 7 2x 3 7 without absolute values
2y = 10 2y = —4 Solve as usual.
x=35 x= -2
The solutions of |2x — 3| = 7are x = 5 andx = —2.

EXAMPLE?  Solving an Inequality Involving Absolute Values

g - < 1.

=9

Solve the inequality




2 2
S—E {IQ—IQS—E{ZI Property 6
2

< —6 <3< —4 Subtract 5.
e3>1>0 ltiply by — -
3 Multiply }—E.

1 | .
{=}§ < X < 3 Take reciprocals.

EXAMPLE  Solve the inequality and show the solution set on the real line:

@ |2x—3| =1 ®) [2x -3 =1
x Solution
1 2
(a) (a) |2v — 3] =1
¥ —1l=2x—-3=1 Property 8
1 2 2=2kxr=4 Add 3
® l=x=12 Divide by 2
FIGURE 1.4 The solution sets (a) [1. 2] The solution set is the closed interval [1. 2] (Figure 1.4a).
— e T
and (b) (—oo, 17U [2. o¢) in Example 6. ) 2w -3 =1
2Zvx—3=1 or 2x—3=-1 Property 9
x - % = % or x — % = —% Divide by 2
x=2 or x=1 Add 3.

The solution set is (—oo, 1] U [2, oo

P’

(Figure 1.4b).



EXAMPLE 1 Identifying Domain and Range

Verify the domains and ranges of these functions.

Function Domain (x) Range ()
y=x (=00, o) [0. o©)
v =l/kx (—00.0)U (0. 0) (—00.0)U (0. 20)

y=Vx [0. o0) [0, o0)
vy=V4-—x (=00, 4] [0, o0)
y=VI1-—x? [-1.1] [0. 1]

In Exercises 19-28, find the (a) domain and (b) range.
19. y = |x| = 2 20. y= -2+ V]l ~-x

2. y 22, y =374
2. y=2¢"~-3 24. y = tan(2x - w)

28. y=2sin(3x + @) — 1 26. y = £

!
N
|
-

'

Domain: -1 = x= 1 Domain: -1 =y = 1 Domain: —se << X << oo

- K s B ) _E o F

Range: -3 5_152 Range: O=y=sw Range: FE¥E3
y ¥ ¥

T
5 =4 mmmmm—— Y i
v =sin"'x ¥ =rcos'x 2 v = tan~lx
- )
A : e
_T
1= 1 & *X 2
1

2 -1
(a} (b} {c)
Domain: x=-lorx=1 Domain: x=-lorx=1 Domain: —eo < X < oo
Range: DE}'i‘xr,.u'aﬁg Range: —%5_\'5%,}'9‘30 Range: O=y<w
¥ ¥ ¥

(d) () (fy



Functions
In Exercises 1-6, find the domain and range of each function.

L f(x) =1+ x2 2. fx) =1 - Vx

2

3. FixX) = V5x + 10 4. glx) = Vx* - 3
4 2
5. /(1) = 77— 6. G(t) = 5——
f) = 30— Gl = 5=
I. domain = (—oo, oo); range = [1, o) 2. domain = [0, oo); range = (—oo, 1]

3. domain = [-2,c¢); y inrange and y = +/5x + 10 = 0 = y can be any positive real number = range = [0, 0o).
4. domain = (—oo, 0] U [3, co); y inrange and y = +/x2 — 3x = () = y can be any positive real number = range = [0, cc).

5. domain = (—oc,3)U (3, o) yinrangeandy = 75 nowift <3 =3 —t> 0= ;5 > D orift > 3
=3 — t < 0= 7% < 0=y can be any nonzero real number = range = (—oc, 0) U (0, oc).

6. domain = (—oo, —4) U (—4.4)U (4. cc);yinrangeandy = = nowift < —4 = ¢ — 16 > 0= = > 0. orif

—4<t<d=-16<t —16<0= -1 < =g <0orift>4 =t — 16 >0= =5 > 0= ycanbeany

nonzero real number = range = (—oc, — & U (), 0o).
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Types of function and Inverse function

Algebraic Functions An algebraic function is a function
constructed from polynomials using algebraic operations
(addition, subtraction, multiplication, division, and taking

roots). Rational functions are special cases of algebraic
functions.

Polynomials A function p 1s a polynomial if
p(x) = apx™ + @i x™ L+ -+ ax + ag

where » 1s a nonnegative integer and the numbers ag. ay. as.. ... a, are real constants
(called the coefficients of the polynomial). All polynomials have domain (—oc, 00). If
the leading coefficient a, # 0 and n = 0. then » 1s called the degree of the polynomial.

p(x) = ax® + bx + c. are called quadratic functions.

Rational Functions A rational function is a quotient or ratio of two polynomials:

)
f(T] - f}(r)

where p and g are polynomials. The domain of a rational function is the set of all real x for
which g(x) # 0. For example. the function

"

2x- — 3
Tx + 4

flx) =

is a rational function with domain {x| x # —4/7}



Domain: x # 0

Range: y+# 0

(@)

Domain: x = 0
Range: y=0

(b)

Graphs of the power functions f(x) = x for part

(a)a = —1 and for part (b)a = —2.

Trigonometric function

cos(d + B) = cos4cosB — sindsinB

hypotenuse ] sin(4 + B) = sindcosB + cosAsinB
opposite
cos 20 = cos’ @ — sin’ 0
“H M sin 260 = 2sin @ cos f
adjacent

1 + cos 26

sinﬂ:ﬂ cscﬁ}:lﬂ 00529=72
hyp opp

- .2, 1 —cos26

cos f = adj sec B = h—}? sin" @ = 2
hyp adj
tan # = ﬂ cot 8 = a—dJ
adj opp
sin?0 + cos?60 = 1

1 tan(A + B) tanA + tanB
2 — an =
1+tan“0 = ——— 1 — tanAtanB

cos-0
1+ cot?0 = ——
sin?60




® Definitions

Let f be a function whose domain is the set X, and whose range is the set Y.
Then f is invertible if there exists a function g from Y to X

e The inverse function of a function f(also called the inverse of f) is
a function that undoes the operation of f. Theinverse of fexists if
and only if fis bijective, and if it exists, is denoted by fl.

Forafunction f:x — y then f~1:y - x itsinverse

DEFINITION
y = sin~ ' x is the number in [~ /2, 7/2] for which siny = x.
¥y = cos ' x is the number in [0, ] for which cosy = x.

f
<]

-
L

N


https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Codomain
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Bijection

EXAMPLE Finding Trigonometric Function Values

Iftan# = 3/2and 0 < # < /2. find the five other trigonometric functions of 6.

Solution From tan# = 3/2. we construct the right triangle of height 3 (opposite) and
base 2 (adjacent) in Figure 1.72. The Pythagorean theorem gives the length of the hy-

potenuse. V4 + 9 = \V13. From the triangle we write the values of the other five

trigonometric functions:

r

2 . 3 V13 V13 2
P 3 3 3 2
cosf = —. sinf = — sech = 5 csclh = ——. cotd = =
V13 V13 < 2 2
TABLE 1.4 Values of sin 8. cos 8. and tan # for selected values of 8
Degrees —180 —-135 -9 —45 0 30 45 60 90 120 135 150 180 270 360
o _ =37 —m =7 T m @ @ 2m 37 S 37
# (radians) T 1 3 1 0 6 1 3 2 3 1 6 T 3 27
. -2 -2 1 V2 V3 Vi V2 1
sin @ 0 3 -1 > 0 2 3 3 1 3 3 3 0 -1 0
_ . —V2 V2 Vi Ve o 1 =V2 o =vV3
cos 1 3 0 ) 3 5 0 > 5 3 1 0 1
/o _ — [
tan 0 0 1 1 0 \;’ 1 V3 V3 - ;” 0 0

Periodicity and Graphs of the Trigonometric Functions

When an angle of measure # and an angle of measure # + 27 are in standard position.
their terminal rays coincide. The two angles therefore have the same trigonometric func-

tion values:
cos(@ + 2m) = cos @ sin(@ + 27) = siné tan(f + 27) = tan O
sec(f + 2m) = sech csc(f + 2m) = csc b cot(f + 2m) = coth

Similarly, cos (6 — 27) = cos 6. sin (# — 27) = sin . and so on. We describe this re-
peating behavior by saying that the six basic trigonometric functions are periodic.

Prof that cos(0 + 2m) = cos(0)
cos(0 + 2m) = cos(0B)cos(2m) — sin(0)sin(2m)

cos(0 + 2m) = cos(0) — 0 = cos(0)



EXAMPLE 8  Evaluate (a)sin 1(%6) and (b) cos l(—%).
Solution
{a) We see that
()
sin '\ 37 ) =3

because sin(mw/3) = \.-"'Ef? and (3 belongs to the range [~ /2, 7/2] of the arcsine
function. See Figure 1.69a.

{b) We have

because cos (2w/3) = —1/2 and 27/3 belongs to the range [0, 7] of the arccosine
function. See Figure 1.69b. ]

Using the same procedure illustrated in Example &, we can create the following table of
common values for the arcsine and arccosine functions.

'\"'E{'Z w3 w6
\"E{'E /4 w4
1/2 w6 w3
-1/2 —m/6 23
-V2/2 —/4 3w /4
-V3/2 —x/3 57/6

In Exercises /—12, one of sin x, cos x, and tan x 15 given. Find the other
two if x lies in the specified interval.

. 3 T T
7. 50X =3 X e [j,f.-r-l B. tanx = 2, x e [U,j]

| T 3 T
9.::03:—3, :e[—z,ﬂl] Il].ms:——u, Xe E,w-l

l 3T . | 3T
11. tanx = 3 Xe f.'r,—l 12, sinx = 3. XE [':r.r, T]




Power Functions A function f(x) = x?. where « is a constant, is called a power func-
tion. There are several important cases to consider.

(a) a = n. apositive integer.

The graphs of f(x) = x". forn = 1. 2. 3. 4. 5. are displayed in Figure 1.36. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves
tend to flatten toward the x-axis on the interval (—1. 1). and also rise more steeply for
|x| = 1. Each curve passes through the point (1, 1) and through the origin.

LN T T

- -1
Graphs of f(x) = x".n = 1, 2, 3.4, 5 defined for —00 < x < 00,

4

h v
y=Vx
1~ y= “\%E
1/-
| x ' X
0 1 0 1
Domain: 0 = x < o Domain: —«@ << X << o
Range: 0=y<w Range: - <y<
y
o
y
y=x32
1+- 1
' > X
0 1 0
Domain: 0 = x < o Domain: —%0 < x < ¢
Range: O0=y<ow Range: 0=y <w
] . a 1 13 2
Graphs of the power functions f(x) = x% fora = 2307 a11d?.

AR



DEFINITION The logarithm function with base a, v = log, x, is the inverse
of the base a exponential function y = a* (g = 0,a # 1).

The domain of log, x is (0, oC), the range of a”. The range of log, x is (—0oo, 00), the do-

main of a*.

The function v = Inx is called the natural logarithm function, and v = logx 1s
often called the common logarithm funetion. For the natural logarithm,

Inx =y & & =1

In particular, if we set x = ¢, we obtain

Ine = 1

because ¢! = e.

Properties of Logarithms

THEOREM 1—aAlgebraic Properties of the Natural Logarithm For any numbers
b = 0 and x = 0, the natural logarithm satisfies the following rules:

1. Product Rule: Infx = Inbh + Inx
b

2. Quorient Rule: Ing = Inb — Inx

3. Reciprocal Rule: ln% = —Inx

4. Power Rule: Inx" =rinx

Yy



Inverse Properties for a* and log, x

1.Base a: %" = x, log,a” = x, a>=0a# x>0

I -
2. Basee: " = x, Ine* = x, x=10

EXAMPLE 1  Recognizing Functions

Identify each function given here as one of the types of functions we have discussed. Keep
in mind that some functions can fall into more than one category. For example. f(x) = x>
is both a power function and a polynomial of second degree.

@ flx)=1+x— %.\'5 M glx)=7 (© hiz) =z’
@ »(r) = sin(r — %)
Solution

(@ flx)=1+x— %.\‘5 is a polynomial of degree 5.

(b) g(x) = 7" is an exponential function with base 7. Notice that the variable x is the

exponent.
(¢) h(z) = z7is a power function. (The variable = is the base.)
(d) v(z) = sin (r - %) is a trigonometric function. "]

Example:] consider the real-valued function of a real variable
given by:

f(x) = 5x — 7.

Inverse of (f) is the function: X = (f(X;”)

Yy


https://en.wikipedia.org/wiki/Real_number
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LIMITS AND CONTINUITY

Average Rates of Change and Secant Lines

Given an arbitrary function y=f(x), we calculate the average rate of change of y with respect
to x over the interval[xi, X2] by dividing the change in the value of y, Ay = f(x3) — f(x1),

by the length of the interval over which

the change occurs. (We use the symbol h

for Ax to simplify the notation here and

later on.) y=Jx
Ay _ fx) = f(x1) Q(x2. f(x2))
Ax Xy — Xq :
_ fO+h)—f(xq) :
- h Secant |
|
| y
h#0 P(xy, f(xy)) :A"
Geometrically, the rate of change of f [
over [X1, Xz], is the slope of the line T T -
through the points p(x1,f(x1)), and Q( Xz, :
f(x2a)) (Figure 2.1). = .\", "’ > X

In geometry, a line joining two points of

a curve is a secant to the curve. Thus, the
average rate of change of f from X1 t0 X2
is identical with the slope of secant PQ.

Let’s consider what happens as the point

FIGURE 2.1 A secant to the graph
y = fl(x). Its slope is Ay/Ax, the
average rate of change of f over the
interval [x1, x2].

Q approaches the point P along the curve,
so the length h of the interval over which
the change occurs approaches zero.

what is meant by the slope of a curve at a point P on the curve?

If there is a tangent line to the curve at P—a line that just touches the curve like the tangent to

FIGURE 2.2 L 1s tangent to the
circle at P if it passes through P
perpendicular to radius OP.

a circle—it would be reasonable to identify the slope of
the tangent as the slope of the curve at P.

EXAMPLE 3: Find the slope of the parabola y = x? at the
point P(2, 4). Write an equation for the tangent to the
parabola at this point.

Solution:

We begin with a secant line through P(2, 4) and
Q(2+h, (2+h)?). We then write an expression for the slope
of the secant PQ and investigate what happens to the

slope as Q approaches P along the curve:

Yo



A 24+h)?2—-(2%) h®+4h+4-4
_y:( )e—( ): hi4
Ax h h

secant slope =

Ifh > 0 then Q lies above and to the right of P, as in Figure 2.4. If h < 0 then Q lies
to the left of P (not shown). In either case, as Q approaches P along the curve, h
approaches zero, and the secant slope approaches 4. We take 4 to be the parabola’s
slope at P.

(2 4+ h)?—4
h

=h + 4.

Secant slope is

%ungem slope = 4

Ay = (2 + h)? — 4

02 + h, (2 + b)Y

> X

ol 77/ 2 2+ h

NOT TO SCALE
FIGURE 2.4 Finding the slope of the parabola y = x~ at the point P(2, 4) as the
limit of secant slopes (Example 3).
The tangent to the parabola at P is the line through P with slope 4:
y=4+4(x—-2)
y=4x—4

The instantaneous rates were found to be the values of the average rates of change, as
the interval of length h approached 0. That is, the instantaneous rate is the value the
average rate approaches as the length h of the interval over which the change occurs
approaches zero.

The average rate of change corresponds to the slope of a secant line;

the instantaneous rate corresponds to the slope of the tangent line as the independent
variable approaches a fixed value.

Examples: Find the average rate of change of the function over the given interval or
intervals:

1) f)=x3+1 a)[23] b)[-1,+1]
2 g =x*  AFLH] b)[-20]
3 r®)=cot(®) AT HE]
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4) k(t) =cot(t) +2 a)[0,n], b)[—m, ]

Solution:
A 3)—f(2 28—-9
1).a)é=f(;_£()= — =19,
Af fD)—f(-1) 2-0
v 1-(-1) 2 =1
Ag g(1)—g(-1) 281-1-9
S v s R
Ag _g(0)—g(=2) 0-4_
D) ax= o ~ 2z " °
w AGD )
4 2
an_h(z)-h(E)_o0-v3_-3v3
b) A (@) T -
2 6 3
Ak k(m)—k(0) 1-3 2
4).@)E= — = p- =_E’
b Ak k(m) —k(-m) 3-1 1
)E_ T—(-m) = 2w T
Examples

The accompanying graph shows the total distance s traveled by a bicyclist after (t) hours.

Distance traveled (mi)
[ ]
=

0 1 2 3 4
Elapsed time (hr)
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a. Estimate the bicyclist’s average speed over the time intervals [0, 1], [1, 2.5], and
[2.5, 3.5].

b. Estimate the bicyclist’s instantaneous speed at the times t=1/2, t=2 and t=3 .

c. Estimate the bicyclist’s maximum speed and the specific time at which it occurs.

Solution:
a) [01] & ="2"=15mi/h, [11.25] T =2—="="mi/h,
[2535] T =22 =10mi/h

b) At p(1/2,7.5) since the portion of the graph from t=0 tot=1 is nearly linear, the
instantaneous rate of change will be almost the same as the average rate of

change, thus the instantaneous speed at t=1/2 is v = 115__07'55 =15mi/h
at p(2,20) since the portion of the graph from t=2s to t=2.5s is nearly linear,
instantaneous rate of change will be almost the same as the average rate of
20-20

change, thus the instantaneous speed at t=1/2 is v = —— = 0 mi/h.
for values of t less than 2, we have:
Q Slope of PQ = %
Q.(1,15) D=2 — 5 mi/hr
Q2(1.5,19) 2= = 2 mi/hr
Q3(1.9,19.9) 83— = 1 mi/hr
Thus, it appears that the instantaneous speed at t = 2 is 0 mi/hr.
AtP(3,22):
Slope of PQ = 22 Slope of PQ = 4%
At At
Q.(4,35) 22 = 13 mi/hr Q1(2,20) 2-2 = 2mi/r
2(3.5,30) -2 — 16 mi/hr 2(2.5,20) 20-22 — 4 mi/hr
35-3 25-3
Q3(3.1,23) B2 — 10 mi/hr Q3(2.9,21.6) 216-22 — 4 mi/hr

Thus, it appears that the instantaneous speed at t = 3 is about 7 mi/hr.

(c) It appears that the curve is increasing the fastest at t = 3.5. Thus for P(3.5, 30)

Q Slope of PQ = % Q Slope of PQ = %
Q1(4,35) 2= = 10 mi/hr Qi(3,22) Z=2 = 16 mi/hr
Q2(3.75,34) 2= = 16 mi/hr Q2(3.25,25) o= = 20 mi/hr
Q3(3.6,32) 230 = 20 mi/hr Q3(3.4,28) =20 = 20 mi/hr

Thus, it appears that the instantaneous speed at t = 3.5 is about 20 mi/hr.

Limit of a Function and Limit Laws:

limits of Function Values.

when seeking the instantaneous rate of change in y by considering the quotient function for
h closer and closer to zero.
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EXAMPLE :

How does the function:

behave near x=17?
Solution:

The given formula defines f for all real numbers x except x=1 (we cannot divide by zero). For
anyx # 1. we can simplify the formula by factoring the numerator and canceling common
factors:

(x-D)(x+1)
x-)

f(x)= X+1

The graph of fis y = X +1 the line with the point (1, 2) removed. This removed point is

shown as a “hole” in Figure.

/ 1 0 |I *

Even though f(1) is not defined, it is clear that we can make the value of f(x) as close as we
want to 2 by choosing x close enough to 1 (Table 2.2).

AR



TABLE 2.2 The closer x gets to 1, the closer f(x) = (x* — 1)/(x — 1)
seems to get to 2

Values of x below and above 1 flx) = "f:__ 11 =x+1, x#1
0.9 1.9

1.1 2.1

0.99 1.99

1.01 2.01

0.999 1.999

1.001 2.001

0.999999 1.999999

1.000001 2.000001

Let’s generalize the idea illustrated in Example 1.

Suppose f(x) is defined on an open interval about X, , except X, possibly at itself. If

f(x) is arbitrarily close to L (as close to L as we like) for all x sufficiently close to we
say that f approaches the limit L as X approaches x,and write:

lim f(x) =L

X=X

“the limit of f(x) as x approaches X, is L.”
limf(x) =2
x—1

o oxt -1
lim———=2
x-1 x—1



EXAMPLE This example illustrates that the limit value of a function does not depend
on how the function is defined at the point being approached. Consider the three functions
in Figure 2.8. The function f has limit 2 as x — 1 even though f is not defined at x = 1.

y y y

N x2—1
(a) flx) = —1

1 (b) glx) =4 ¥~ T () hix)y=x+1

FIGURE 2.8 The limits of f(x), g(x), and h(x) all equal 2 as x approaches 1. However,
only h(x) has the same function value as its limit at x = 1 (Example 2).

The function g has limit 2 as x — 1 even though 2 # g(1). The function 4 is the only one
of the three functions in Figure 2.8 whose limit as x — 1 equals its value at x = 1. For A,
we have lim,_; h(x) = h(1). This equality of limit and function value is significant, and
we return to it in Section 2.5. |

.

XopF————

(a) Identity function
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(b) Constant function

FIGURE 2.9 The functions in Example 3
have limits at all points x;,.

EXAMPLE
(a) If f is the identity function f(x) = x, then for any value of x, (Figure 2.9a),

lim f(x) = lim x = xo.
X—*Xxg X—*Xxp

(b) If f is the constant function f(x) = k (function with the constant value k), then for
any value of x, (Figure 2.9b),

lim f(x) = lim k = k.

X=—*Xp XX
For instances of each of these rules we have

lIimx=3 and lim?(4) = Iim2(4) = 4,

x—3 x——

¥ y

_ 0, x<0
T x=0

(a) Unit step function U(x) (b) g(x) (€) f(x)

FIGURE 2.10 None of these functions has a limit as x approaches 0 (Example 4).
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The Limit Laws.

THEOREM 1—Limit Laws If L, M, ¢, and k are real numbers and
lim f(x) = L and lim g(x) = M, then
= X=>c
1. Sum Rule: lim(f(x) + gx)) =L+ M
X—*
2. Difference Rule: lm(f(x) —glx)) =L - M
X=>g
3. Constant Multiple Rule: lim(k- f(x)) = k-L
X
4. Product Rule: lim(f(x)-g(x)) =L-M
X=>g
5. Quotient Rule: z}l—qlc % = %, M#0
6. Power Rule: Iim[f(x)]" = L", n a positive integer
X—*
7. Root Rule: lim V f(x) = /L =LY ", n a positive integer
X=>
(If n is even, we assume that lim f(x) = L = 0.)
x=>g

EXAMPLE Use the observations lim,—. k = k and lim,—.x = ¢ (Example 3) ¢
the properties of limits to find the following limits.

st
@ mG +42—3) @ imE22X -1 (9 lim V4x 3
X—>c X=—>c 2 e

2 +5
Solution
(a) lim(.r3 + 4x? — 3) = lim x* + lim 4x? — lim 3 Sum and Difference Rules
x—c x—>c x—c x—c
=c}+4c -3 Power and Multiple Rules
4 5 limGx* +x2 = 1)
e nDET e ol x—c¢ y
(b) lim 3 = T > Quotient Rule
x—>c. x*+5 lim(x* + 5)
x=c
lim x* + lim x* — lim 1
x—c x—c x—¢ ; .
= . > . Sum and Difference Rules
lim x* + lim 5
x—c x—c
A +2-1
e Power or Product Rule
(il S
(¢) lim \/4.!'2 -3= \/ lim (4x2 - 3) Root Rule withn = 2
x—=2 x—=2
= \/ lim 4x2 — lim_3 Difference Rule
x—>=2 x—>=2

=X 4(—2)2 -3 Product and Multiple Rules
=VIi6—3
= V13
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The Sandwich Theorem

The sandwich Theorem is also called the Squeeze Theorem or the Pinching Theorem:

THEOREM 4—The Sandwich Theorem Suppose that g(x) = f(x) = h(x) for
all x in some open interval containing ¢, except possibly at x = ¢ itself. Suppose
also that

lim g(x) = lim A(x) = L.

xX—*¢ x—*c

Then lim,_.,. f(x) = L.

EXAMPLE Given that

2

- 2ux)=s1+
1 4 u(x) 1

(]

X
2

find lim,— #(x), no matter how complicated u is.

forallx # 0,

Solution  Since
lin})(l - (x*4) =1 and lin})(l + (x%/2)) =1,
o x>

the Sandwich Theorem implies thatlim, .o u(x) = 1 (Figure 2.13).

EXAMPLE The Sandwich Theorem helps us establish several important limit rules:
li inf =0 b) L =1
(a) el—% sin (b) 81_151} cos

(¢) For any function f, lim |f(x)| = 0 implies lim f(x) = 0.
x—rc x—r¢
Solution
(a) In Section 1.3 we established that —|#| = sinf = |@| for all @ (see Figure 2.14a).
Since limy—.g(—|0|) = limy—g || = 0, we have

lim sinf® = 0.
A—0

(b) From Section 1.3, 0 = 1 — cos# = |@| for all @ (see Figure 2.14b), and we have
limg—g (1 — cos@) = Oor

lim cos @ = 1.
#—0

(¢) Since —|f(x)| = f(x) = |f(x)| and —|f(x)| and |f(x)| have limit 0 as x—>¢, it
follows that lim,—.. f(x) = 0. [
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_'r=|ﬂ|

vyv=1—cosf

I L .
= 0] 1 2 ?
(b)
FIGURE The Sandwich Theorem

confirms the limits in Example 11.

Another important property of limits is given by the next theorem. A proof is given in
the next section.

THEOREM 5 If f(x) = g(x) forall x in some open interval containing ¢, except
possibly at x = ¢ itself, and the limits of f and g both exist as x approaches c,
then

lim f(x) = lim g(x).
x> X—*c




Example:

20.

21.

22

Find the limits in Exercises 11-22.
12. lim(—x® + 5x — 2)

11.

13.

15.

17.

19.

21.

X——

]im?(}?.x + 5)

lim 8(¢t — 5)(¢t — 7)

—6

lim
—2 X +

x+ 3

3
6

lim 3(2x — 1)?

——1

lim (5 — }»'}45'3

y——3

3

lim

h—=0N/3h 4+ 1 + 1

S M @45 =2A-T+5=~1445=-9
X — —

x—2

14. lim (x> — 2x” + 4x + 8)

x——2

16. Iim 3s(2s — 1)

s—=2/3
+ 2
18. lim ——
yv=2 "+ 5p+ 6

20. lim (2z — §)'/°

z—0

22. lim
h—0

lim (=X 45x=2) = —@F +52) =2 = —4+10-2=4

. tlimﬁ Bt —5)(t—7)=8(6—-5)6—-7)= -8

NSh +4 -2

h

1im2(x3—2x2+4x+8)=(—2)3—2(—2)2+4(—2)+8=—8—8—8+8=—16
X = =

lim | 3(2x — 12 = 3Q(-1) — 1 = 3(-3¢ =27
X = -

. 42 . 242 —
Yll—l>nz y115y+6 e +g—(2’+6 B

Jim, 58 =76

x+3 2+3

3
8

4

lim Yohid-2 lim
h—0 h h—0
Vit+2 4

4 =2 1
4+10+6 — 20— §

Jim (22 — 8)13 = (2(0) — 8)/F = (—8)1/F = 2

; R 3 _ 3 3
hll_l,n(: Thelel il Jisl 2

t6. tim 355 =) =3(3) () 1] =2( - 1)

Yy Eﬂla (5 — y)-ifli =[5— (_3)]4[3 — (s)lﬂi — ((8)”:‘)4 —24 - 16

Vihid-2 hidy2 lim —Ghi4-4

h

Vsh+4+2  j

M h(\/5h+4+2)

A

= lim . sh lim ———
h—0 h(\/_sh+4+2) h—0 V3h+d+2

2
3



Limits of quotients Find the limits in Exercises 23—42.

23.

25.

27.

29.

31.

33.

35.

lim <>
x—5 x- — 25
i ¥2 +3x — 10
lim P +1—2
—1 2=
lim —= 1
——2 x° + 2x°

1

==1
lim =
—1 x — 1
Coout =1
lim

24, lim 22
=3 x* + 4x + 3
2 _
26. lim X Tx + 10
x—2 x—2
2
28. lim w
——1 - —f=2
30, lim ————
y—=0 3y° — 16y
1 1
X — + X
32. lim SR
x—=() X
3_
34, lim 22
v—2 uy° — 16
) 4x — x*
36. lim

37. lim —= 38. i
=1y +3 -2 ==l x|
2
. Vx'+12-4 : x+2
39. 1 40. 1
s x— 2 -2 Vx?+5-3
_ z _ _
41. lim 2 X — 9 42. lim 22
r——3 x4+ 3 =4 5 _ Z\/xi 4+ 0
Solution:
. _5 . :
23. xll_l}-ﬂﬁ ::—25 = XIEI,IF, (x+5)(x—5) - 111_1}115 x-]|-5 - 5;-'-5 -

24,

. x+3 x+3 _ . |
Jm . ans = im an = imy =

v




25.

26.

27.

28.

29.

30.

31

32.

33

34.

3s.

36.

37.

38.

39.

(x+5)x—2)

lim 2310 = i = lim_(x-2)=-5-2=-7
X — —5 X+5 X — —5 x+5 x—o-—ﬁ( ) ?

. 1 _ . -5 — .

lim *=0H0 =y (22002 D= lim (x—5)=2-5=-3
X =2 x—2 X =2 = X =2

: C41-2 _ G+-0 _ q: 42 _ 142 _ 3
Jim S = lim ey = lim 5 =y =

B E+3t+2 (S T t+2 __ —1+2 1
Jim TS = Im ey = Jim) S =S5 =

: 2x—4 __ . =2x+2) _ : =2 _ =2 _ _1
xl_l,m,g X9+ 2% Em,Q X(X+2) _xl_l,m,-z T4y T2

; Sy 48y s ViSy+8 Sy+8 8 _ 1
Jmy s—rey = MMy o—te = M 51 = T < 2

. 1_ . 1-x 1 1 .

lim f— = lim —, = lim ( _"-—)= lim —= = —1
X — 1 X x— 1 x—1 x— 1 X x—1 —1

1+ x=1

lim ST - gim T = im (2 4) = im =2=0
X — 0 X T X Tl NE-DEED) xS T g x=Dx+1) T -1 T
. wl—1 . W+ D+ Du—1) _ W+Dw+l) _ A+DI+1) _ 4
ull—1>n] u— '1“1 (u +ut1)u=1) —u'E,“I wrutl T+1+1 3

P v-8 _ (V=2 (V +2v+d) o Vi+v+d 44444 12 3
Vl'_‘,'ﬂz =16 hm2 [ e ey M VIHPQ NI Ea) @ 32 8

. -3 . Vi- 1 1 1

lim VA3 lim = lim =1 =1
Xx—09 X9 x— 0 (\/__3)(\/_"'3) x—9 \/;+3 Vo+3 6

lim B = fim 260 i VORS00 X) =42 +2) =16
x—d 2-Vx T xoy 2- x—4 2-/x x —4
x—1 . (x—1){(/x+3+2) I x=D(V/x+3+2) ( )_ _

Jim e = lim s ey = limy e = Jlim (ViR342) = VA2 =4
tim VT g SISy s

m x+1 - m - —
X — —1 X — —1 (x+1) +8+3 x—= =1 (x+1)(vx*+8+3

— im [ESNEES [T -1 _ -2 _ 1

x—o-—] (x+1)(\fx +8 +‘}) X = —1 ¥ +B+3 3+3 3

lim YEFZ-4 _ o (VEFma-4) (Vieia+e) (2 +12) —
x—2 x=2 x—2 (x—2}(ﬁ+4) x—-2 (1—2)(m+4)

= lim (x=2)x+2) x+2 — 4 _ 1

x—tZ (x—’)(\/x +1’+4) x—-Z X+ 1244 Vie+4 2

y x42 i (x+2)(\/x2+5+3) . (x+2) (V543

im_ —=— = lim = lim -
x—= =2 V¥+5-3 x—-2 ( —3) (\jx3+5+3) X—= - *+35)-9

— lim [x+2}('xg+j+3) — lim VEES+3  V9+3 3

T o= =2 xX+2x—2) T2 x—2 3 ~— 13
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51. S-uppose lim, g f(x) = 1 and lim, ., g(x) = —5. Name the
rules in Theorem 1 that are used to accomplish steps (a), (b), and
(c) of the following calculation.

2() — gl _ M0~ &)

0 (f(x) + 7)%° B lim ((x) + 723 @)
lim 2f(x) — lim g(x)
_ x—biir x—0 - (b)
(Jim (700 + 7))
2 lim f(x) — lim g(x)
_ x—0 x—0 (C)

li + lim 7)%°
(Jlim £ + lim 7)

_ @) - (=5 _7

1+ 7% 4
52. Let limy— hlx) = 5, lime—; p(x) = 1, and lim,., r(x) = 2.

Name the rules in Theorem 1 that are used to accomplish steps
(a), (b), and (c) of the following calculation.

Ve lm Ve

I @ — @) Tim (P04 — () @
A/ lim 5h(x)
= == (b)
YT
\ .-’5]i_r»nI hix)
= = (c)

(fim o) (Jiy 4 = i )

VG)5) s

S (E4-2) 2

53. Suppose lim,_.. f(x) = 5 and lim, .. g(x) = —2. Find

a. lim f(x)g(x) b. lim 2/(x)g(x)
. . flx)
c. El_rg(f(x] + 3g(x)) d. ‘ll_rz}: —f(x) g

54. Suppose lim, .4 f(x) = 0 and lim, ., g(x) = —3.Find

a. li_rz};(g(x) + 3) b. ]i_r&xf(x)
. 5 g(x)
¢. lim (g(x)) d- lim 1

55. Suppose lim,—;, f(x) = 7 and lim, ., g(x) = —3. Find

a. lim (/) + g() b lim f(x)-g(x)
c. lim 4g(x) d. lim f(x)/g(x)

56. Suppose that lim,—. > p(x) = 4, lim,—, > r(x) = 0, and
lim,—, > s(x) = —3. Find

a. E@Z@(x] + rix) + s(x))
b. . ]_i»n_l2 plx)-r(x)-s(x)
c. En_lz(—{u(x) + 5r(x))/s(x)
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3-1 Tangents and the Derivative at a Point:

3-1-1Finding a Tangent to the Graph of a Function:

To find a tangent to an arbitrary curve y=f(x), at a
point p(xo, f(Xo)), we calculate the slope of the secant
through P and a nearby point Q(xo+h,f(xo +h)). We
then investigate the limit of the slope as h —»0
(Figure 3.1). If the limit exists, we call it the slope of
the curve at P and define the tangent at P to be the
line through P having this slope.

Q(xg + h, f(xy + h))

P (X0 f (xg))

y=fx)

|

| flxg + ) — flxg)
|
|
I
|

0

xg+h

FIGURE 3.1 The slope of the tangent

fxo + 1) — flx)

line at P is lim
h—0 h

number

’ flxo + h) — f(xo)
11

h=—0 h

m:

¥ EXAMPLE 1

pointx = —1?

Solution

h—0 h
FIGURE 3.2 The tangent slopes, steep ’

near the origin, become more gradual as

the point of tangency moves away

(Example 1).

€Y

. fla+ h) — fla)
lim ————— =

(b) Where does the slope equal —1/4?
(¢) What happens to the tangent to the curve at the point (a, 1/a) as a changes?

DEFINITIONS The slope of the curve y = f(x) at the point P(xg, f(xg)) is the

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.

(a) Here f(x) = 1/x.The slope at (a, 1/a) is

a

+h @
h—0

h
—h

(a) Find the slope of the curve y = 1/x at any point x = a # 0. What is the slope at the

. 1a—f(a+h)
lim +

r—0 h ala + h)

i /!l—rpn hala + h)

im = :
h—0 ala + h) a’



Notice how we had to keep writing “lim;,—.¢” before each fraction until the stage
where we could evaluate the limit by substituting # = 0. The number @ may be posi-
tive or negative, but not 0. When a = —1, the slope is —1/(— 1)> = —1 (Figure 3.2).

(b) The slope of y = 1/x at the point where x = a is —1/a’. It will be —1/4 provided
that

| —

_ 1

a2

This equation is equivalent to a”> = 4,50 a = 2 or @ = —2. The curve has slope
—1/4 at the two points (2, 1/2) and (—2, —1/2) (Figure 3.3).

(c) The slope —1 /a2 is always negative if @ # 0. As a — 07, the slope approaches —oo

and the tangent becomes increasingly steep (Figure 3.2). We see this situation again as

a— 0. As a moves away from the origin in either direction, the slope approaches 0
and the tangent levels off to become horizontal. [

Rates of Change: Derivative at a Point

The expression

flxo + k) — flxo)
p :

h#0

is called the difference quotient of f at x;, with increment A. If the difference quotient
has a limit as & approaches zero, that limit is given a special name and notation.

DEFINITION  The derivative of a function f at a point x,, denoted f'(x;), is
flxo + h) — f(xo)

r — l
(o) = lim A

provided this limit exists.

£y



EXAMPLE 2  In Examples 1 and 2 in Section 2.1, we studied the speed of a rock falling
freely from rest near the surface of the earth. We knew that the rock fell y = 1612 feet dur-
ing the first ¢ sec, and we used a sequence of average rates over increasingly short intervals
to estimate the rock’s speed at the instant 7 = 1. What was the rock’s exact speed at this
time?

Solution  We let f(r) = 16¢2. The average speed of the rock over the interval between
t = landt = 1 + hseconds, for & > 0, was found to be

f(L+h) — f(1) _ 16(1 + h)? — 16(1)? _ 16(h% + 2h)

7 7 7 = 16(h + 2).
The rock’s speed at the instant t = 1 is then
I}i_r)nﬂ 16(h + 2) = 16(0 + 2) = 32 ft/sec.
Our original estimate of 32 ft/ sec in Section 2.1 was right. [

Summary

We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a
function, and the derivative of a function at a point. All of these ideas refer to the same
limit.

The following are all interpretations for the limit of the difference quotient,

flxo + h) — flxo)
m .
h—0 h

1. The slope of the graph of y = f(x) atx = xg

2. The slope of the tangent to the curve y = f(x) atx = xq
3. The rate of change of f(x) with respect to x at x = xj

4. The derivative f'(xo) at a point

In Exercises 5-10, find an equation for the tangent to the curve at the
given point. Then sketch the curve and tangent together.

7 yzz\/;, (1,2) 8. y:_]p (=1, 1)
X
— .3 ——1 ]
9. y=x, [_2: _3} 10. y= i _2’__
X 8

¢y



5. m= lim

[4—(=1+h?]—@d—(=1F) y
h

h—0
2 - -
— lim M = lim h(?h D
h—0 h—0

at(—1,3): y=3+2(x—(—1)) = y=2x+35,
tangent line

(A+h—1 +1—[a—1F+1] _ lim B

6. m= lim
h—0 h h—o0 B

=h]ir_nnh=0;at(1,1]: y=140x-1) = y=1,

tangent line

¥y
7 m= lim 2/R=2VT _ o 2VI4h-2 2VTih+2 k
i h . : i y=x+1
— lim 20+h-4 g 2 — 1 Al
h—0 2}1(\;’1+h+1) h—0 V1th+l -
. 3k y=
at(1,2): y=2+1(x—1) = y = x+ 1, tangent line
r (1,2)
1
o 1 2 3 s

1 1

. H “I:hF  —IF 1 1—(—1+h*
8. m= lim, h = plimy S

e 2-h 5.

= Dim S = lim Sy =2

at(—1,1): y=142(x—(—-1)) = y=2x+3,
tangent line

9 m= ljm S2EhP-(2° o —Brioh—6h +hi48 y
’ h—0 h h—0 h y=12x+16 .‘r‘=«\‘3
= h]imn (12— 6h + h?) = 12;
at (—2,-8): y= -8+ 12(x — (-2)) = y= I12x + 16, 2
tangent line
-2,-8)¢ -3

¢¢



1 1
[T —8§—(—2+h)®

10, m = lim EEEE < tim | SR I\
_ lim —(2h-6H 4B 12— 6h b 2.-18) )
= Iim =g = M S .
12
w16
1y, 3
at(—,—g}.y— 5§~ 6(x—(=2) m%
= y = — 1= x — L, tangent line

Vertical Tangents

We say that a continuous curve y = f(x) has a vertical tangent at the
point where x = xp 1f lim g (f(xy + h) — filxg))/h = 00 or —00.
For example, y = x'/3 has a vertical tangent at x = 0 (see accompa-

nying figure):
. flO+h)—fO)  plBF—0p
lim = lim ———
h—0 h h—0 h
) |
= lim n =
h—0 23

Graph the curves 1n Exercises 37—-46.
a. Where do the graphs appear to have vertical tangents?

b. Confirm your findings in part (a) with limit calculations.

37. v = x5 38. v = x5

39, y = x5 40. y = x*°

41. y = 4x? — 2x 42, y = xP — 555

43. y = x23 — (x — 1)V3 44, y = x13 + (x — 1)1/3

—\/|¥|j x=10
45.y={\/;? .0 46. y = V|4 — x|

37. (a) The graph appears to have a cusp at x = 0.

(b) lim RO = fim X0 = lim - = —ocoand lim = =oco = limit does not exist
h— 0~ h— 0~ h— 0~ h—0f

= the graph of y = x*/* does not have a vertical tangent at x = 0.

¢o



38. (a) The graph appears to have a cusp at x = 0.

.0

L — o0 = limit does not exist

. — . 45 . .
(b) lim w = lim 5 =0= lim L =-ccand lim
h— 0~ h— 0~ h—0- b h—pt B

= y = x%? does not have a vertical tangent at x = 0.

39. (a) The graph appears to have a vertical tangent at x = (.

IRYG
(0,0} y=x

im = 0o = y = x'/% has a vertical tangent at x = 0.

b) lim Moth-1f0 _ -0 _ 1
()h_)n h h—0 h—p B

40. (a) The graph appears to have a vertical tangent at x = 0.

(0, 0)

. (0 + h) — 1(0) . Wi—0 . 1 3/5 :
lim ———— = lim = lim = =00 the graph of y = x*/* has a vertical tangent at x = ().
h—0 h h—o h—o b7 = graph oty 8

(b)

41. (a) The graph appears to have a cusp atx = 0. o
]
y=4x2/5-2x
3
X
-1 0 1 2
3 /5 - .
(b) lim 1OEW-FO _ iy = = lim_ 2 -2=-coand lim 2 -2=c0
h— 0~ f h— 0~ h— 0= b h— 0t I

= limit does not exist = the graph of y = 4x**® — 2x does not have a vertical tangent at x = 0.

42. (a) The graph appears to have a cusp at x = 0.

v= l‘ - 3!’2'“
©,0
x
(2.0,-4.76)
. i . 53 _ ap0/3 . y 5 . .
(b) hlu‘nn w = hhmr) hf’h = h]lm() h?/% — T =0~ hhm[) hls_s does not exist = the graph of
— — — —

y = x*/% — 5x2/3 does not have a vertical tangent at x = 0.

1



43. (a) The graph appears to have a vertical tangent at x = 1 y

and a cusp at x = 0.
2
y=x23_(x.)!/3
]
X
-1 0 1 2
P | o 1 it ) et et SR TR § I L L R
(by x=1: lim 5 —hlin . = —00
= y = x*% — (x — 1)"/? has a vertical tangent at x = 1;
. . f(0+h) — [0y _ 12 WA (h— DV —(—ts . 1 (h— 117 1
x=0 Jlim) SRR = lim SRS = lim [ - 854

does not exist = y = x*/* — (x — 1)"/% does not have a vertical tangent at x = 0.

44. (a) The graph appears to have vertical tangents at x = 0 and
x =1

L x
-1 /ﬂ.s 1.5

/ y=rP P

=00 = y= x1/3 4 (x — l):l“fl'.‘1 has a

®) x=0: lim 0+ -0y W+ DP Do
h —

vertical tangent at x = 0;
. _ . 1/3 —1ylE
x =1 lim Mth—f® _ o G+0P+a+h-DE -1

— — 1/3 /3
Jim 5 Jim . oo = y=x/"+(x—1)/"hasa

vertical tangent at x = 1.

45. (a) The graph appears to have a vertical tangent at x = 0. y
1
x
=1 1
B -7ix1 , x<0
U, xs0
: f(0 + ) — f(0) : vh—0 . 1
b) lim ———— = lim = lim —= = oc;
®) h — 0t h x — 01 b h—0 vh
lim  OEWO o, VR0, SV L
h— 0~ b h— 0~ b h—o0- —h h— 0= VI

= y has a vertical tangent at x = 0.

1Y



46. (a) The graph appears to have a cusp at x = 4.

(b) lim MWD o, Via-dsm[-o _ lim. b —  fim L

h— 0 h h— 0 h h—pt n h— 0t vh
lim MW gy VEEEERL gy VL gy oL o
h— 0~ b h— 0~ h—0- —h — h=o- Vb

= y = /4 — x does not have a vertical tangent at x = 4.

3-1 The Derivative as a Function:

DEFINITION  The derivative of the function f(x) with respect to the variable x is
the function f’ whose value at x is

flx + k) — fx)

r — 1‘
£() = fim S

provided the limit exists.

y= _f('(}

Secant slope is

fz) = flx)
Qlz flz2) _ E—=
P(x, f(x)) flz) = flx)
RN
T I
l—h =z — x—!
| [
| [
S NE—
x z=x+h
Derivative of fat x is
F) = lim LB~ S0
=0 h
_ lim flz) — fx)
I=3X i—x

FIGURE 3.4 Two forms for the difference
quotient.
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Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea
that differentiation is an operation performed on a function y = f(x), we use the notation

L1

3-3 differentiation Rules:

Derivative of a Constant Function
If f has the constant value f(x) = ¢, then

af _ d
ol E(C) = (.
Power Rule (General Version)
If n is any real number, then
ixn — nx"_]
dr k)

for all x where the powers x"and x" ! are defined.

Derivative Constant Multiple Rule
If u 1s a differentiable function of x, and c¢ is a constant, then

i(cu) = CQ
dx dx’

In particular, if » is any real number, then

i j, } Y- n—1
dx(cx ) = enx® -,

Derivative Sum Rule

If 1 and v are differentiable functions of x, then their sum « + v is differentiable
at every point where u and v are both differentiable. At such points,

du , dv

d _
dr(u+v)_dx I

€4




Derivative of the Natural Exponential Function

d Ty o X
dx(e)_e

Derivative Product Rule

If u and v are differentiable at x, then so is their product zv, and

A, dv du
dx(uv)_udx+vdx'

Derivative Quotient Rule

If « and v are differentiable at x and if v(x) # 0, then the quotient u/v is differ-
entiable at x, and

Jdu _dv
d (u) _ Vi "
de \v /|~ 2 '

v

In function notation,

d {f(x)} _g0f' &) — flx)g'(x)
dx | g(x) g%(x) ’

Ex.

find the first and second derivatives.

l.y=—xz+3

4x° . .
5.y=%—x+2€ 7. w=23z2%-

(x + 1)(x + 2)
By T2

2 x
_x° 4+ 3e
30. vy = Ep—
32. w= re’
M. y=xF + 72 13, vy =03 —x)x* —x+ 1)

Solution:



. y=-—x*43 = %:;—x(—xz){-%@):—z}({-o:—lﬂ = :—3:—2

2 y=xl4+x+8 = Vo4 140=241= L¥-2

X

5. y=3x"—x = gf=4x2—l = %=8x

7. w=3z2—71 5 & _ 631,264 1 o du_1g,4_ 2,3 _18_2
28. y = :ﬁi;fﬁfg; = f”tgiii =y = (¢ =x42) Q(it_’l’))?_(ii;)ﬁsprm 22D 7" :?;j(tl—zz)z = (X:GIE;E(;—Z;}E
0. y=Lx s y=4xt =y =13 y"=1 3 yW=x = y0=1= y =0foralln>6

Ay=x-1DE2+3x-5)=x4+2x2-8x+5= vy =3"+4x -8 = y' =6x+4 = y" =6 = y™ =0forall
n>4

3. y=03-x)X*-x+1) == y=06-x)- 2 —x+ 1)+ -x+1)- L (3-x?
=B-x)Bx2—1)+(x* —x+1)(—2x) = —5x* + 12x? — 2x — 3
b) y=—x"+4x* —x2 =3x+3 = y =-5x'+12x2 - 2x -3

32 y =43 +3x)(2—x) = —dx* +8% =33+ 6x = y = —16X° +24x7 —6x+6 = y' = —48x” +48x — 6
= y" = -96x+48 = y¥ = -96 = y = Oforalln >5

34 s=030l o 43 Lo 45— 02 5 S o052 423 = 5024260 = B4 2

s _ 3 _ =4 10 6
= G =10t 6t =& — &

DSOS 555>5>

The derivative of the sine function is the cosine function:

4 (sinx) = cosx.

dx

o)



EXAMPLE 1  We find derivatives of the sine function involving differences, products,
and quotients.

5y . dy il .
(@ y=x"— sinx: = 2x — E(sm X) Difference Rule
= 2X — COSX
b) ¥ = e’sinx: @i = e"'i(sin x) + i(e"‘) sinx  Product Rule
(b) . o dx dx ’ dx
= e¢*cosx + e*sinx
= ¢*(cosx + sinx)
d , . ]
: , X*——(sinx) — sinx- 1
© y=3% @y _ % g Quotient Rul
o - . S TR D= Juotien ule
2 * dx x2

_ XCOSX — sinx
— —_) .
2

The derivative of the cosine function is the negative of the sine function:

4 (cosx) = —sinx.

dx

EXAMPLE 2 We find derivatives of the cosine function in combinations with other
functions.

(a) y = 5¢" + cosx:
d
IJ‘: = %(Sff} + %(CUS_‘E) Sum Rule
= 5¢* — sinx
(b) y = sinxcosx:
dy . d d, .
o smxa(cusx) + cusxﬁ(sm X) Product Rule

= sinx(—sinx) + cosx(cosx)

= cos’x — sin’x

oy



COS X

© »= | — sinx’
dy (1 — Sinx)di(cusx) — Cosxdi(l — sinx)
E = L (1 - }2 X Quotient Rule
— sinx
~ (1 — sinx)(—sinx) — cosx(0 — cosx)
(1 — sinx)?
= (ll_¢x)2 sin” x + cos”x = 1
— sinx
- 1
1 —sinx

DSOS 55555>5>5>

The derivatives of the other trigonometric functions:

‘%(tanx] = sec’x %(cotx} = —csc’x
d _ d _
E(secx] = secxtanx E(csc x) = —cscxcotx

EXAMPLE 5  Find d(tan x)/dx.

Solution  We use the Derivative Quotient Rule to calculate the derivative:

d

3 Quotient Rule
COs™ X

d . . . d
B cosx (sinx) — sinx r(cosx)
dx dx \cosx

iI:tanx] -4 (Sinx

cosxcosx — sinx (—sinx)

0052 X

cos’x + sin®x

8052 X

1 2
= 3 = S€C™ X.

COs™ X

oy



EXAMPLE 6 Find y" ify = secx.

Solution  Finding the second derivative involves a combination of trigonometric deriva-
tives.

¥y = secx

¥ = secxtanx Derivative rule for secant function

y" = %(secxtanx]

d d
= secx ;- (tanx) + tanx e (sec x) Derivative Product Rule

= secx(sec’x) + tan x(sec x tanx) Derivative rules
= sec’ x + secxtan®x |
EX.
find dy/dx.
1
5.y =cscx — 4Vx + 7 ﬁ.y=xzcutx——2
X
7. flx) = sinxtanx 8. g(x) = cscxcotx

9. y = (secx + tanx)(secx — tanx)

10. y = (sinx + cosx)secx

cotx _ COSX

1. y= 12. ¥ = T  sinx

1 4+ cotx

34. Find y¥ = d*y/dx* if

a. v = —2sinx. b. v =9cosx.

o¢



5. y=cscx—4\/;+7 = %;‘f:—cscxcotx—;lﬁ+0=—cscxcotx—%

dy 2
6. y=x2cotx—;1; = ﬁ:x?%(cotx)+cotx-;—x(x2)+g=—x2csc?x+(cotx)(2x)+;25

1
= —x%csc?x + 2x cot x + =

7. f(x) = sinxtanx = f'(x) = sinxsec’x + cos x tan x = sinx sec’x + cos x 3% = sinx(sec’x + 1)

2 3

8. g(x) = cscxcotx = g'(x) = cscx(—csc?x) + (—cse xcot x)cotx = —csc’x — csc x cot’x = —csc x(csc?x + cot’x)

9. y = (sec x + tan x)(sec X — tan x) = %=(secx+tanx)%(secx—tanx)+(secx—tanx)ﬁ(secx+tanx)

2

= (sec x + tan x) (sec x tan x — sec? x) + (sec x — tan x) (sec x tan x + sec® x)

= (sec” x tan x + sec x tan® x — sec”® x — sec” x tan x) + (sec’ x tan x — sec x tan” x + sec® x — tan x sec’ x) = 0.

(Note also that y = sec’x — tan’x = (tan’x + 1) —tan’x = 1 = £ = 0.)

10. y = (sinx + cos X)sec x = %=(sinx—I—cosx)%(secx}+secxi(sinx+cosx)

(sin x 4 cos x)(sec X tan x) + (sec X)(cos X — sin x) = HLXTCOSWSNX 4 cos X —sinx

cos? X cos X
_ sin"x+cosxsinx4cos' x—cosxsinx 1 9
- cost X = cosix — SECTX
. d.
ofe also tha = SIn X sec x COsS X 5eC X = [an x - = SeCc” X.
Note also that y + tanx +1 = F 2
11 __colx dy _ (1+cotx) g (cotx)—(cotx) g (1+cotx) (1 +cot x)(—esc’ x) — (cot x) (—esc x)
Y = Trcorx dx — (1 +cot xF - (1 +cot x)
_ —escix—csc Xxcolxtese xeolx . —CsC X
= (1+ cot x)? ~ (1+cotx)?
12 — _eosx dy (I+s‘1nx)a";(cusx}—(casx}a‘%{l+sinx} __ (1 +sin x) (—sin x) — (cos x) (cos x)
- Y= 1 +sinx dx — (1 + sin x)* - (14 sin x)*
_ —sinx—sinfx—cosx __ —sinx—1 _ —(l+sinx) -1
- (1 + sin x)* T {l1+sinxf T (I4sinx)f T~ 14+sinx
34. (a) y=-2sinx = y' = -2cosx = y' = —-2(-sinx) =2sinx = y” =2cosx = y¥ = —2sinx
(b) y=9cosx = y = -9sinx = y’= -9cosx = y” = —9(—sinx) =9sinx = y* =9cosx

oo



