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Introduction: 

 

1. The natural numbers, namely 1, 2, 3, 4,…. 

2. The whole numbers 0,1,2,….. 

3. The integers, namely 0, ∓1, ∓2, ∓3, … 

4. The rational numbers, namely the numbers that can be 

expressed in the form of a fraction m/n , where m and n are 

integers and 𝑛 ≠ 0  

 

Examples:1/2, -3/4, 57/1, 200/13… 

The rational numbers are precisely the real numbers with 

decimal expansions that are either: 

(a) Terminating (ending in an infinite string of zeros), for 

example, 

(b) Eventually repeating (ending with a block of digits that 

repeats over and over), example: 
23/11= 2.090909..= 09.2  

  0.75 = ء0.75000 = 3/4

5. Irrational numbers. They are characterized by having 

nonterminating and nonrepeating decimal expansions 

EX. √3 , √5, 𝜋.. 

Real numbers that are rational and irrational numbers (all 

number groups) 

The real numbers can be represented geometrically 

as points on a number line called the real line. 
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Functions and Their Graphs 

 

2. DEFINITION OF A FUNCTION 

A function, defined for all numbers, is an association 

which to each number associates another number. If we 

denote a function by (f), then this association is denoted 

by: 

𝑥 → 𝑓(𝑥) 

We call f (x) the value of the function at x, or the image 

of x. f(x) also can be written as: 

𝑦 = 𝑓(𝑥) 

The set D of all possible input values is called the domain of the 

function, all values of ƒ(x) as x varies throughout D is called the 

range of the function.  
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A function can also be pictured as an arrow diagram (Figure 

1). Each arrow associates an element of the domain D to a 

unique or single element in the set Y. 

 

 

Example 2 

1. Linear function : 𝑓: 𝑥 → 𝑎𝑥 + 𝑏 

2. Quadratic function: cbxaxxf ++→ 2)( , where a,b,and c are 

constant and 0a  

3. Let G be the function: 
number rational anot  is x if 1  G(x)

number. rational a is x if 0  G(x)

=

=
   

4. 𝑓: 𝑥 → √𝑓(𝑥): 𝑓(𝑥) ≥ 0 
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5. 𝑓: 𝑥 →
1

𝑓(𝑥)
: 𝑓(𝑥) ≠ 0 

 

Graphs of Functions 
   A way to visualize a function is its graph. If ƒ is a 

function with domain D, its graph consists of the points in 

the Cartesian plane whose coordinates are the input-output 

pairs for ƒ.  

 

 
Not every curve in the coordinate plane can be the graph of a function. A 
function ƒ can have only one value for each x in its domain, so no vertical 
line can intersect the graph of a function more than once. If a is in the 
domain of the function ƒ, then the vertical line will intersect the graph of 
ƒ at the single point . A circle cannot be the graph of a function since some 
vertical lines intersect the circle twice. The circle in Figure 1.7a, however, 
does contain the graphs of two functions of x: the upper semicircle 
defined by the function and the lower semicircle defined by the function 
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EXAMPLE 3  

Graph the function 
2xy = over the interval [-2, +2] 

Solution 
Make a table of xy-pairs that satisfy the function rule, in this case the 

equation y = x2 . 
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Fig. (5) 
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Types of function and Inverse function 

 

Algebraic Functions An algebraic function is a function 

constructed from polynomials using algebraic operations 

(addition, subtraction, multiplication, division, and taking 

roots). Rational functions are special cases of algebraic 

functions.  
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Trigonometric function 

 

 

 

 

𝐬𝐢𝐧𝟐𝜽 + 𝐜𝐨𝐬𝟐𝜽 = 𝟏 

𝟏 + 𝒕𝒂𝒏𝟐𝜽 =
𝟏

𝒄𝒐𝒔𝟐𝜽
 

𝟏 + 𝒄𝒐𝒕𝟐𝜽 =
𝟏

𝒔𝒊𝒏𝟐𝜽
 

 

𝒕𝒂𝒏(𝑨 + 𝑩) =
𝒕𝒂𝒏𝑨 + 𝒕𝒂𝒏𝑩

𝟏 − 𝒕𝒂𝒏𝑨𝒕𝒂𝒏𝑩
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• Definitions 
Let f be a function whose domain is the set X, and whose range is the set Y. 

Then f is invertible if there exists a function g from Y to X  
• The inverse function of a function  f (also called the inverse of f) is 

a function that undoes the operation of  f.  The inverse of  f exists if 

and only if  f is bijective, and if it exists, is denoted by f-1 . 

For a function  𝑓: 𝑥 → 𝑦 𝑡ℎ𝑒𝑛 𝑓−1: 𝑦 → 𝑥 its inverse  

 

 

 

 

https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Codomain
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Bijection
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Ex: 

Prof that 𝒄𝒐𝒔(𝜽 + 𝟐𝝅) = 𝒄𝒐𝒔(𝜽) 

𝒄𝒐𝒔(𝜽 + 𝟐𝝅) = 𝒄𝒐𝒔(𝜽)𝒄𝒐𝒔(𝟐𝝅) − 𝒔𝒊𝒏(𝜽)𝒔𝒊𝒏(𝟐𝝅) 

𝒄𝒐𝒔(𝜽 + 𝟐𝝅) = 𝒄𝒐𝒔(𝜽) − 𝟎 = 𝒄𝒐𝒔(𝜽) 
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EX: 
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Properties of Logarithms 
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Example:, consider the real-valued function of a real variable 

given by: 

f(x) = 5x − 7. 

Inverse of (f ) is the function: X = (
f(x)+7

5
) 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Real_number
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LIMITS AND CONTINUITY 

Average Rates of Change and Secant Lines 

Given an arbitrary function y=f(x), we calculate the average rate of change of y with respect 

to x over the interval[x1, x2] by dividing the change in the value of y,  ∆𝑦 = 𝑓(𝑥2) − 𝑓(𝑥1), 

 by the length of the interval over which 

the change occurs. (We use the symbol h 

for ∆𝑥 to simplify the notation here and 

later on.) 

∆𝑦

∆𝑥
=

𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1

=
𝑓(𝑥1 + ℎ) − 𝑓(𝑥1)

ℎ
    

 ℎ ≠ 0 

Geometrically, the rate of change of ƒ 

over [x1, x2],   is the slope of the line 

through the points p(x1,f(x1)), and Q( x2, 

f(x2a)) (Figure 2.1). 

 In geometry, a line joining two points of 

a curve is a secant to the curve. Thus, the 

average rate of change of ƒ from x1 to x2 

is identical with the slope of secant PQ. 

 Let’s consider what happens as the point 

Q approaches the point P along the curve, 

so the length h of the interval over which 

the change occurs approaches zero. 

what is meant by the slope of a curve at a point P on the curve? 

If there is a tangent line to the curve at P—a line that just touches the curve like the tangent to 

a circle—it would be reasonable to identify the slope of 

the tangent as the slope of the curve at P.  

EXAMPLE 3: Find the slope of the parabola 𝑦 = 𝑥2 at the 

point P(2, 4). Write an equation for the tangent to the 

parabola at this point. 

Solution: 

We begin with a secant line through P(2, 4) and         

Q(2+h, (2+h)2 ). We then write an expression for the slope 

of the secant PQ and investigate what happens to the 

slope as Q approaches P along the curve: 



26 
 

𝑠𝑒𝑐𝑎𝑛𝑡 𝑠𝑙𝑜𝑝𝑒 =
∆𝑦

∆𝑥
=

(2 + ℎ)2 − (22)

ℎ
=

ℎ2 + 4ℎ + 4 − 4

ℎ
= ℎ + 4 

Ifℎ > 0 then Q lies above and to the right of P, as in Figure 2.4. If ℎ < 0 then Q lies 

to the left of P (not shown). In either case, as Q approaches P along the curve, h 

approaches zero,  and the secant slope approaches 4. We take 4 to be the parabola’s 

slope at P.  

 

The tangent to the parabola at P is the line through P with slope 4: 

𝑦 = 4 + 4(𝑥 − 2) 

𝑦 = 4𝑥 − 4 

The instantaneous rates were found to be the values of the average rates of change, as 

the interval of length h approached 0. That is, the instantaneous rate is the value the 

average rate approaches as the length h of the interval over which the change occurs 

approaches zero. 

 The average rate of change corresponds to the slope of a secant line;  

the instantaneous rate corresponds to the slope of the tangent line as the independent 

variable approaches a fixed value.  

 

Examples: Find the average rate of change of the function over the given interval or 

intervals: 

1)  𝑓(𝑥) = 𝑥3 + 1    a) [2,3]               b)[-1,+1] 

2) 𝑔(𝑥) = 𝑥2            a)[-1,+1]            b)[-2,0] 

3) ℎ(𝑡) = cot (𝑡)       a)[
𝜋

4
,

3𝜋

4
]            b) [

𝜋

6
,

𝜋

2
] 
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4) 𝑘(𝑡) = cot(𝑡) + 2   a)[0, 𝜋],        b)[−𝜋, 𝜋]  

 

Solution:         

1).  𝑎) 
Δ𝑓

Δ𝑥
=

𝑓(3) − 𝑓(2)

3 − 2
=

28 − 9

1
= 19,     

     𝑏) 
Δ𝑓

Δ𝑥
=

𝑓(1) − 𝑓(−1)

1 − (−1)
=

2 − 0

2
= 1 

2).  𝑎) 
Δ𝑔

Δ𝑥
=

𝑔(1) − 𝑔(−1)

1 − (−1)
=

281 − 1 − 9

2
= 0,    

      𝑏) 
Δ𝑔

Δ𝑥
=

𝑔(0) − 𝑔(−2)

0 − (−2)
=

0 − 4

2
= −2 

3).  𝑎) 
Δℎ

Δ𝑥
=

ℎ (3
𝜋
4) − ℎ (

𝜋
4)

3
𝜋
4 − (

𝜋
4)

=
−1 − 1

𝜋
2

= −
4

𝜋
,   

       𝑏)  
Δℎ

Δ𝑥
=

ℎ (
𝜋
2) − ℎ (

𝜋
6)

𝜋
2 − (

𝜋
6)

=
0 − √3

𝜋
3

=
−3√3

𝜋
 

4).  𝑎) 
Δ𝑘

Δ𝑥
=

𝑘(𝜋) − 𝑘(0)

𝜋 − 0
=

1 − 3

𝜋
= −

2

𝜋
,         

𝑏)  
Δ𝑘

Δ𝑥
=

𝑘(𝜋) − 𝑘(−𝜋)

𝜋 − (−𝜋)
=

3 − 1

2𝜋
=

1

𝜋
 

Examples 

 The accompanying graph shows the total distance s traveled by a bicyclist after (t) hours. 
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a. Estimate the bicyclist’s average speed over the time intervals [0, 1], [1, 2.5], and 

[2.5, 3.5].  

b.  Estimate the bicyclist’s instantaneous speed at the times t=1/2, t=2 and t=3  . 

c.  Estimate the bicyclist’s maximum speed and the specific time at which it occurs.  

Solution: 

a) [0,1]  
Δ𝑥

Δ𝑡
=

15−0

1−0
= 15 𝑚𝑖/ℎ, [1,1.25]   

Δ𝑥

Δ𝑡
=

20−15

25−1
=

10

3
𝑚𝑖/ℎ,  

[2.5,3.5]   
Δ𝑥

Δ𝑡
=

30−20

3.5−2.5
= 10𝑚𝑖/h 

b) At p(1/2,7.5) since the portion of the graph from t=0 tot=1 is nearly linear, the 

instantaneous rate of change will be almost the same as the average rate of 

change, thus the instantaneous speed at t=1/2 is 𝑣 =
15−7.5

1−0.5
= 15 𝑚𝑖/ℎ 

at p(2,20) since the portion of the graph from t=2s  to t=2.5s is nearly linear, 

instantaneous rate of change will be almost the same as the average rate of 

change, thus the instantaneous speed at t=1/2 is 𝑣 =
20−20

2.5−2
= 0 𝑚𝑖/ℎ. 

for values of  t less than 2, we have: 

 

 

Limit of a Function and Limit Laws: 

limits of Function Values: 

when seeking the instantaneous rate of change in y by considering the quotient function for 

h closer and closer to zero. 
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EXAMPLE : 

How does the function: 

𝑓(𝑥) =
𝑥2 − 1

𝑥 − 1
 

 behave near x=1? 

Solution: 

The given formula defines ƒ for all real numbers x except x=1 (we cannot divide by zero). For 

any𝑥 ≠ 1. we can simplify the formula by factoring the numerator and canceling common 

factors: 

1
)1(

)1)(1(
)( +=

−

+−
= x

x

xx
xf  

 The graph of ƒ is 1+= xy  the line with the point (1, 2) removed. This removed point is 

shown as a “hole” in Figure. 

 

 

  Even though ƒ(1) is not defined, it is clear that we can make the value of ƒ(x) as close as we 

want to 2 by choosing x close enough to 1 (Table 2.2).  
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Suppose ƒ(x) is defined on an open interval about 0x  , except 0x  possibly at itself. If 

ƒ(x) is arbitrarily close to L (as close to L as we like) for all x sufficiently close to we 

say that ƒ approaches the limit L as x approaches  0x and write: 

𝐥𝐢𝐦
𝒙→𝒙𝟎

𝒇(𝒙) = 𝑳 

“the limit of ƒ(x) as x approaches 0x  is L.” 

𝐥𝐢𝐦
𝒙→𝟏

𝒇(𝒙) = 𝟐 

𝐥𝐢𝐦
𝒙→𝟏

𝒙𝟐 − 𝟏

𝒙 − 𝟏
= 𝟐 
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The Limit Laws: 
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The Sandwich Theorem 

 The sandwich Theorem is also called the Squeeze Theorem or the Pinching Theorem: 
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Example:  
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Solution: 
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3-1 Tangents and the Derivative at a Point: 

 

3-1-1Finding a Tangent to the Graph of a Function:  

To find a tangent to an arbitrary curve y=f(x), at a 

point p(x0, f(x0)), we  calculate the slope of the secant 

through P and a nearby point Q(x0+h,f(x0 +h)). We 

then investigate the limit of the slope as h          0  

(Figure 3.1). If the limit exists, we call it the slope of 

the curve at P and define the tangent at P to be the 

line through P having this slope. 
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3-1 The Derivative as a Function: 
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3-3 differentiation Rules: 
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Ex.  

find the first and second derivatives. 

   

         

         

Solution: 
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 Ex. 
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