Isolonic and Buffer Solutions

11

PHARMACEUTICAL CALCULATIONS
LECTURE 2
LEVEL1 (2022/2023)
DR AHMAD A. KINANI
PHARMACEUTICAL DEPARTMENT
AL-FARAHIDI UNIVERSITY

Objectives

Upon successful completion of this chapter, the student will be able to:

- Differentiate between the terms isosmotic, isotonic, hypertonic, and hypotonic.
- Apply physical chemical principles in the calculation of isotonic solutions.
- Perform the calculations required to prepare isotonic compounded prescriptions.
- State the buffer equation and apply it in calculations.

When a solvent passes through a semipermeable membrane from a dilute solution into a more concentrated one, the concentrations become equalized and the phenomenon is known as osmosis. The pressure responsible for this phenomenon is termed osmotic pressure and varies with the nature of the solute.

If the solute is a nonelectrolyte, its solution contains only molecules and the osmotic pressure varies with the concentration of the solute. If the solute is an electrolyte, its solution contains ions and the osmotic pressure varies with both the concentration of the solute and its degree of dissociation. Thus, solutes that dissociate present a greater number of particles in solution and exert a greater osmotic pressure than undissociated molecules.

Like osmotic pressure, the other colligative properties of solutions, vapor pressure, boiling point, and freezing point, depend on the number of particles in solution. Therefore, these properties are interrelated and a change in any one of them will result in a corresponding change in the others.

Two solutions that have the same osmotic pressure are termed isosmotic. Many solutions intended to be mixed with body fluids are designed to have the same osmotic pressure for greater patient comfort, efficacy, and safety. A solution having the same osmotic pressure as a specific body fluid is termed isotonic (meaning of equal tone) with that specific body fluid.

Solutions of lower osmotic pressure than that of a body fluid are termed hypotonic, whereas those having a higher osmotic pressure are termed hypertonic. Pharmaceutical dosage forms intended to be added directly to the blood or mixed with biological fluids of the eye, nose, and bowel are of principal concern to the pharmacist in their preparation and clinical application.

Physical/Chemical Considerations in the Preparation of Isotonic Solutions

The calculations involved in preparing isotonic solutions may be made in terms of data relating to the colligative properties of solutions. Theoretically, any one of these properties may be used as a basis for determining tonicity. Practically and most conveniently, a comparison of freezing points is used for this purpose. It is generally accepted that $-0.52^{\circ} \mathrm{C}$ is the freezing point of both blood serum and lacrimal fluid.

When one gram molecular weight of any nonelectrolyte, that is, a substance with negligible dissociation, such as boric acid, is dissolved in 1000 g of water, the freezing point of the solution is about $1.86^{\circ} \mathrm{C}$ below the freezing point of pure water. By simple proportion, therefore, we can calculate the weight of any nonelectrolyte that should be dissolved in each 1000 g of water if the solution is to be isotonic with body fluids.

Boric acid, for example, has a molecular weight of 61.8 ; thus (in theory), 61.8 g in 1000 g of water should produce a freezing point of $-1.86^{\circ} \mathrm{C}$. Therefore:

In short, 17.3 g of boric acid in 1000 g of water, having a weight-in-volume strength of approximately 1.73%, should make a solution isotonic with lacrimal fluid.

$$
\frac{1.86\left({ }^{\circ} \mathrm{C}\right)}{0.52\left({ }^{\circ} \mathrm{C}\right)}=\frac{61.8(\mathrm{~g})}{\mathrm{x}(\mathrm{~g})}
$$

If we assume that sodium chloride in weak
solutions is about 80% dissociated, then each 100 molecules yields 180 particles, or 1.8 times as many particles as are yielded by 100 molecules of a nonelectrolyte. This dissociation factor, commonly symbolized by the letter i, must be included in the proportion when we seek to determine the strength of an isotonic solution of sodium chloride (m.w. 58.5):

$$
\begin{aligned}
\frac{1.86\left({ }^{\circ} \mathrm{C}\right) \times 1.8}{0.52\left({ }^{\circ} \mathrm{C}\right)} & =\frac{58.5(\mathrm{~g})}{\mathrm{x}(\mathrm{~g})} \\
\mathrm{x} & =9.09 \mathrm{~g}
\end{aligned}
$$

Hence, 9.09 g of sodium chloride in 1000 g of water should make a solution isotonic with blood or lacrimal fluid. In practice, a $0.90 \% \mathrm{w} / \mathrm{v}$ sodium chloride solution is considered isotonic with body fluids.

Simple isotonic solutions may then be calculated by using this formula:

$$
\frac{0.52 \times \text { molecular weight }}{1.86 \times \text { dissociation }(i)}=\mathrm{g} \text { of solute per } 1000 \mathrm{~g} \text { of water }
$$

Nonelectrolytes and substances of slight dissociation:1.0
Substances that dissociate into 2 ions: 1.8
Substances that dissociate into 3 ions: 2.6
Substances that dissociate into 4 ions: 3.4
Substances that dissociate into 5 ions: 4.2

Example Calculations of the \boldsymbol{i} Factor

Zinc sulfate is a 2-ion electrolyte, dissociating 40% in a certain concentration. Calculate its dissociation (i) factor.

On the basis of 40% dissociation, 100 particles of zinc sulfate will yield:

$$
\begin{aligned}
& 40 \text { zinc ions } \\
& 40 \text { sulfate ions } \\
& 60 \text { undissociated particles } \\
& \text { or } 140 \text { particles }
\end{aligned}
$$

Because 140 particles represent 1.4 times as many particles as were present before dissociation, the dissociation (i) factor is 1.4, answer.

Zinc chloride is a 3-ion electrolyte, dissociating 80% in a certain concentration. Calculate its dissociation (i) factor.

On the basis of 80% dissociation, 100 particles of zinc chloride will yield:

$$
\begin{aligned}
& 80 \text { zinc ions } \\
& 80 \text { chloride ions } \\
& 80 \text { chloride ions } \\
& 20 \text { undissociated particles } \\
& \text { or } 260 \text { particles }
\end{aligned}
$$

Because 260 particles represents 2.6 times as many particles as were present before dissociation, the dissociation (i) factor is 2.6 , answer.

Example Calculations of the Sodium Chloride Equivalent

The sodium chloride equivalent of a substance may be calculated as follows:

Papaverine hydrochloride (m.w. 376) is a 2-ion electrolyte, dissociating 80\% in a given concentration. Calculate its sodium chloride equivalent.

Because papaverine hydrochloride is a 2 -ion electrolyte, dissociating 80%, its i factor is 1.8 .

$$
\frac{58.5}{1.8} \times \frac{1.8}{376}=0.156, \text { or } 0.16, \text { answer. }
$$

Calculate the sodium chloride equivalent for glycerin, a nonelectrolyte with a molecular weight of $92 .{ }^{2}$

$$
\begin{aligned}
& \text { Glycerin, } i \text { factor }=1.0 \\
& \qquad \frac{58.5}{1.8} \times \frac{1.0}{92}=0.35, \text { answer. }
\end{aligned}
$$

Calculate the sodium chloride equivalent for timolol maleate, which dissociates into two ions and has a molecular weight of $432 .{ }^{2}$

Timolol maleate, i factor $=1.8$

$$
\frac{58.5}{1.8} \times \frac{1.8}{432}=0.14, \text { answer. }
$$

Calculate the sodium chloride equivalent for fluorescein sodium, which dissociates into three ions and has a molecular weight of $376 .{ }^{2}$

Fluorescein sodium, i factor $=2.6$

$$
\frac{58.5}{1.8} \times \frac{2.6}{367}=0.23, \text { answer. }
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Molecular weight } \\
\text { of sodium chloride }
\end{array} \\
& i \text { Factor } \\
& \text { of sodium chloride }
\end{aligned} \frac{\begin{array}{c}
i \text { factor } \\
\text { of the substance }
\end{array}}{\begin{array}{l}
\text { Molecular weight } \\
\text { of the substance }
\end{array}}=\begin{gathered}
\text { Sodium chloride } \\
\text { equivalent }
\end{gathered}
$$

TABLE 11.1 SODIUM CHLORIDE EQUIVALENTS (E VALUES)

SUBSTANCE	molecular WEIGHT	IONS	i	SODIUM CHLORIDE EQUIVALENT (E VALUE)
Antazoline phosphate	363	2	1.8	0.16
Antipyrine	188	1	1.0	0.17
Atropine sulfate $\cdot \mathrm{H}_{2} \mathrm{O}$	695	3	2.6	0.12
Benoxinate hydrochloride	345	2	1.8	0.17
Benzalkonium chloride	360	2	1.8	0.16
Benzyl alcohol	108	1	1.0	0.30
Boric acid	61.8	1	1.0	0.52
Chloramphenicol	323	1	1.0	0.10
Chlorobutanol	177	1	1.0	0.24
Chlortetracycline hydrochloride	515	2	1.8	0.11
Cocaine hydrochloride	340	2	1.8	0.16
Cromolyn sodium	512	2	1.8	0.11
Cyclopentolate hydrochloride	328	2	1.8	0.18
Demecarium bromide	717	3	2.6	0.12
Dextrose (anhydrous)	180	1	1.0	0.18
Dextrose. $\mathrm{H}_{2} \mathrm{O}$	198	1	1.0	0.16
Dipivefrin hydrochloride	388	2	1.8	0.15
Ephedrine hydrochloride	202	2	1.8	0.29
Ephedrine sulfate	429	3	2.6	0.23
Epinephrine bitartrate	333	2	1.8	0.18
Epinephryl borate	209	1	1.0	0.16
Eucatropine hydrochloride	328	2	1.8	0.18
Fluorescein sodium	376	3	2.6	0.31
Glycerin	92	1	1.0	0.34
Homatropine hydrobromide	356	2	1.8	0.17
Hydroxyamphetamine hydrobromide	232	2	1.8	0.25
Idoxuridine	354	1	1.0	0.09
Lidocaine hydrochloride	289	2	1.8	0.22
Mannitol	182	1	1.0	0.18
Morphine sulfate $5 \mathrm{H}_{2} \mathrm{O}$	759	3	2.6	0.11
Naphazoline hydrochloride	247	2	1.8	0.27
Oxymetazoline hydrochloride	297	2	1.8	0.20
Oxytetracycline hydrochloride	497	2	1.8	0.12
Phenacaine hydrochloride	353	2	1.8	0.20
Phenobarbital sodium	254	2	1.8	0.24
Phenylephrine hydrochloride	204	2	1.8	0.32
Physostigmine salicylate	413	2	1.8	0.16
Physostigmine sulfate	649	3	2.6	0.13
Pilocarpine hydrochloride	245	2	1.8	0.24
Pilocarpine nitrate	271	2	1.8	0.23
Potassium biphosphate	136	2	1.8	0.43
Potassium chloride	74.5	2	1.8	0.76
Potassium iodide	166	2	1.8	0.34
Potassium nitrate	101	2	1.8	0.58
Potassium penicillin G	372	2	1.8	0.18
Procaine hydrochloride	273	2	1.8	0.21
Proparacaine hydrochloride	331	2	1.8	0.18
Scopolamine hydrobromide. $3 \mathrm{H}_{2} \mathrm{O}$	438	2	1.8	0.12
Silver nitrate	170	2	1.8	0.33
Sodium bicarbonate	84	2	1.8	0.65
Sodium borate $10 \mathrm{H}_{2} \mathrm{O}$	381	5	4.2	0.42

TABLE 11.1 continued

SUBSTANCE	MOLECULAR WEIGHT	IONS	i	SODIUM CHLORIDE EQUIVALENT (E VALUE)
Sodium carbonate	106	3	2.6	0.80
Sodium carbonate $\mathrm{H}_{2} \mathrm{O}$	124	3	2.6	0.68
Sodium chloride	58	2	1.8	1.00
Sodium citrate $2 \mathrm{H}_{2} \mathrm{O}$	294	4	3.4	0.38
Sodium iodide	150	2	1.8	0.39
Sodium lactate	112	2	1.8	0.52
Sodium phosphate, dibasic, anhydrous	142	3	2.6	0.53
Sodium phosphate, dibasic $7 \mathrm{H}_{2} \mathrm{O}$	268	3	2.6	0.29
Sodium phosphate, monobasic, anhydrous	120	2	1.8	0.49
Sodium phosphate, monobasic. $\mathrm{H}_{2} \mathrm{O}$	138	2	1.8	0.42
Tetracaine hydrochloride	301	2	1.8	0.18
Tetracycline hydrochloride	481	2	1.8	0.12
Tetrahydrozoline hydrochloride	237	2	1.8	0.25
Timolol maleate	432	2	1.8	0.14
Tobramycin	468	1	1.0	0.07
Tropicamide	284	1	1.0	0.11
Urea	60	1	1.0	0.59
Zinc chloride	136	3	2.6	0.62
Zinc sulfate $\cdot 7 \mathrm{H}_{2} \mathrm{O}$	288	2	1.4	0.15

Example Calculations of Tonicic Agent Required

How many grams of sodium chloride should be used in compounding the following prescription?

$$
\begin{array}{lc}
\text { R } \quad 0.3 \mathrm{~g} \\
\begin{array}{l}
\text { Pilocarpine Nitrate } \\
\text { Sodium Chloride }
\end{array} & \text { q.s. } \\
\text { Purified Water ad } & 30 \mathrm{~mL} \\
\text { Make isoton. sol. } & \\
\text { Sig. For the eye. } &
\end{array}
$$

Step 1. $0.23 \times 0.3 \mathrm{~g}=0.069 \mathrm{~g}$ of sodium chloride represented by the pilocarpine nitrate
Step 2. $30 \times 0.009=0.270 \mathrm{~g}$ of sodium chloride in 30 mL of an isotonic sodium chloride solution
Step 3. 0.270 g (from Step 2)
$-\underline{0.069} \mathrm{~g}$ (from Step 1)
0.201 g of sodium chloride to be used, answer.

1. Multiply the amount (in grams) of each substance by its sodium chloride equivalent
2. The amount of sodium
chloride in a 0.9% solution of the specified volume. (Such a solution would contain $0.009 \mathrm{~g} / \mathrm{mL}$.)
3. Subtract the amount of sodium chloride Step 1- Step $2=$ amount (in grams) of sodium chloride to be added to make the solution isotonic.
4. If an agent other than sodium chloride; divide the amount of sodium chloride (Step 3) by the sodium chloride equivalent of the other substance.

			ote:	
R	Phenacaine Hydrochloride	1\%	1 gm	100 ml
	Chlorobutanol	1/2\%	X	$60 \mathrm{ml}=0.6 \mathrm{gm}$
	Boric Acid	q.s.		
	Purified Water ad	60	0.5 gm	100 ml
	Make isoton. sol.		X	$60 \mathrm{ml}=0.3 \mathrm{gm}$

The prescription calls for 0.6 g of phenacaine hydrochloride and 0.3 g of chlorobutanol.
Step 1. $0.20 \times 0.6 \mathrm{~g}=0.120 \mathrm{~g}$ of sodium chloride represented by phenacaine hydrochloride $0.24 \times 0.3 \mathrm{~g}=\underline{0.072} \mathrm{~g}$ of sodium chloride represented by chlorobutanol Total: $\quad 0.192 \mathrm{~g}$ of sodium chloride represented by both ingredients
Step 2. $60 \times 0.009=0.540 \mathrm{~g}$ of sodium chloride in 60 mL of an isotonic sodium chloride solution
Step 3. 0.540 g (from Step 2)
$-\underline{0.192} \mathrm{~g}$ (from Step 1)
0.348 g of sodium chloride required to make the solution isotonic

But because the prescription calls for boric acid:
Step 4. $0.348 \mathrm{~g} \div 0.52$ (sodium chloride equivalent of boric acid) $=0.669 \mathrm{~g}$ of boric acid to be used, answer.

How many grams of potassium nitrate could be used to make the following prescription isotonic?
P \quad Sol. Silver Nitrate 60 mL
1:500 w/v
Make isoton. sol.
Sig. For eye use.

$$
\begin{aligned}
& \text { Note: } \\
& 1: 500=0.2 \% \\
& ------------------- \\
& 0.2 \quad 100 \mathrm{ml} \\
& X \quad 60 \mathrm{ml}=0.12 \mathrm{gm}
\end{aligned}
$$

The prescription contains 0.12 g of silver nitrate.
Step 1. $0.33 \times 0.12 \mathrm{~g}=0.04 \mathrm{~g}$ of sodium chloride represented by silver nitrate
Step 2. $60 \times 0.009=0.54 \mathrm{~g}$ of sodium chloride in 60 mL of an isotonic sodium chloride solution
Step 3.0 .54 g (from step 2)
$-\underline{0.04} \mathrm{~g}$ (from step 1)
0.50 g of sodium chloride required to make solution isotonic

Because, in this solution, sodium chloride is incompatible with silver nitrate, the tonic agent of choice is potassium nitrate. Therefore,
Step 4. $0.50 \mathrm{~g} \div 0.58$ (sodium chloride equivalent of potassium nitrate) $=0.86 \mathrm{~g}$ of potassium nitrate to be used, answer.

How many grams of sodium chloride should be used in compounding the following prescription?
R \quad Ingredient X
Sodium Chloride
Purified Water ad
Make isoton. sol.
Sig. Eye drops.
Let us assume that ingredient X is a new substance for which no sodium chloride equivalent is to be found in Table 11.1, and that its molecular weight is 295 and its i factor is 2.4. The sodium chloride equivalent of ingredient X may be calculated as follows:

$$
\frac{58.5}{1.8} \times \frac{2.4}{295}=0.26, \text { the sodium chloride equivalent for ingredient } \mathrm{X}
$$

Then,
Step 1. $0.26 \times 0.5 \mathrm{~g}=0.13 \mathrm{~g}$ of sodium chloride represented by ingredient X
Step 2. $50 \times 0.009=0.45 \mathrm{~g}$ of sodium chloride in 50 mL of an isotonic sodium chloride solution
Step 3. 0.45 g (from Step 2)

- 0.13 g (from Step 1) 0.32 g of sodium chloride to be used, answer.

CALCULATIONS CAPSULE

Isotonicity

To calculate the "equivalent tonic effect" to sodium chloride represented by an ingredient in a preparation, multiply its weight by its E value:

$$
g \times E \text { value }=g, \text { equivalent tonic effect to sodium chloride }
$$

To make a solution isotonic, calculate and ensure the quantity of sodium chloride and/ or the equivalent tonic effect of all other ingredients to total $0.9 \% \mathrm{w} / \mathrm{v}$ in the preparation:

$$
\frac{g(\mathrm{NaCl})+g(\mathrm{NaCl} \text { tonic equivalents })}{m L \text { (preparation) }} \times 100=0.9 \% \mathrm{w} / \mathrm{v}
$$

To make an isotonic solution from a drug substance, add sufficient water by the equation:

$$
\frac{g \text { (drug substance) } \times \text { E value (drug substance) }}{0.009}=m L \text { water }
$$

This solution may then be made to any volume with isotonic sodium chloride solution to maintain its isotonicity.

The E value can be derived from the same equation, given the grams of drug substance and the milliliters of water required to make an isotonic solution.

Stay away from

 negative people. They have a problem for every solution.Alberet Oinstein

